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Abstract

We consider a general family of auction mechanisms that admit multiple buyers and sellers, and determine market-clear-
ing prices. We analyze the economic incentives facing participants in such auctions, demonstrating that, under some
conditions, it is possible to induce truthful revelation of values by buyers or sellers, but not both, and for single- but not
multi-unit bids. We also perform a computational analysis of the auctioneer’s task, exhibiting efficient algorithms for
processing bids and calculating allocations. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

A commercial interaction is composed of at least
three distinct steps. Potential buyers and sellers must
first find one another, then negotiate the terms of the
exchange, and finally, execute the transaction. Elec-
tronic commerce promises to automate part, or all, of
each of these steps. Resource finding is facilitated by

w xsearch engines and shopping agents 4 , and elec-
w xtronic payment mechanisms 9 execute part of the

exchange. Infrastructure for automated negotiation
has not received as much attention, although the
proliferation of online auctions on the World Wide
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Web 3 is evidence that explicit price formation
mechanisms will play an important role in electronic
commerce.

To support our research into negotiation protocols
for electronic commerce and multiagent systems
w x20,21 , we have built the Michigan Internet Auc-

w xtionBot 23 , a configurable auction server deployed
Žover the World Wide Web http:rrauction.

.eecs.umich.edur . The AuctionBot has been opera-
tional since September 1996, allowing human agents
to create auctions and submit bids via web forms,

Ž .and more recently software agents to perform the
same operations via TCPrIP. A user can configure

3 As of July 1998, Yahoo http:rrwww.yahoo.com lists 95
online auctions on the web — and their list is far from complete.
According to industry reports, two of these have gross sales
approaching US$100 millionryear, and online auction sales to-
talled US$500 million in 1997.
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the AuctionBot to administer a variety of auction
types, by setting parameters controlling the bidding
protocol and auction rules. An auction description
specifies such attributes as the number and frequency
of market-clearing events, restrictions on bidding,
revelation of intermediate information, and the poli-
cies for determining prices and matching buyers and

w xsellers 22 . Options currently offered in the Auction-
Bot cover most of the traditional auction types de-
scribed in the literature, and we continue to extend
the system to support a widening variety of auction
mechanisms.

The flexibility offered by a configurable server is
valuable not only for research and experimentation
purposes, but also for the online service itself. Dif-
ferent negotiation mechanisms are appropriate in dif-
ferent circumstances, and so any generic mediation
service should support a range of options. Fortu-
nately, the concept of auction is general enough to
accommodate a rich space of mechanisms.

Auctions also offer the advantage of regularity.
Auction processes tend to operate via simple and
well-structured interfaces, defined in terms of stan-
dardized languages for expressing bids, and for de-
scribing outcomes. This facilitates development of
convenient user interfaces for human participants,
and of software agents for automated negotiation.

A third advantage of working within the auction
framework is that we can draw on a large body of
theoretical work in auction theory and mechanism
design. Auction theory analyzes strategies and out-
comes of the auction as a game, yielding characteri-
zations of equilibrium behavior and outcome proper-
ties. By formalizing the auction as a computational
protocol as well, we can bring to bear standard
techniques for algorithm design and complexity anal-
ysis. In some cases, we may encounter tradeoffs
between desirable economic and computational prop-
erties, causing us to pursue principled ways to make
such tradeoffs in practical negotiation settings.

In this paper, we examine a general family of
auction mechanisms that admit multiple buyers and
sellers, and determine market-clearing prices. We
analyze the economic incentives facing participants
in such auctions, demonstrating that it is possible to
induce truthful revelation of values by single-unit
buyers or sellers, but not both, and not for multi-unit
bids. We also perform a computational analysis of

the auctioneer’s task, exhibiting efficient algorithms
for processing bids and calculating allocations.

2. Auction design

Most of the classic auctions examined in introduc-
w xtory surveys of auction theory 10,14 are one-sided,

Ž .in that a single seller or buyer accepts bids from
Ž .multiple buyers or sellers . Two-sided, or double

w xauctions 5 , in contrast, permit multiple buyers and
sellers to bid to exchange a designated commodity.

Ž .The continuous double auction CDA , matches buy-
ers and sellers immediately on detection of compati-
ble bids. A periodic version of the double auction
Ž w xsometimes termed a call market 11 or clearing-

.house instead collects bids over a specified interval
of time, then clears the market at the expiration of
the bidding interval 4.

Most types of auctions can be characterized in
terms of how they manage three core activities.

1. Process bid. The auction checks a bid for
validity, and updates its database of active bids
accordingly.

2. Generate price quote. During the bidding pe-
riod, the auction may reveal information about the
status of bids. We refer to such reports generically as
price quotes, as they are typically defined in terms
of hypothetical prices. In the AuctionBot and in this
paper, we define a price quote as the price that the
agent would have had to offer in order for its bid to
have been accepted had the auction cleared at the
time of the quote. This definition is expressed in past
tense and subjunctive mood to emphasize that the
price quote represents historical hypothetical infor-
mation.

3. Clear. The primary function of an auction is to
determine contracts between compatible buyers and
sellers. The clear action matches buyers and sellers,
and sets the transaction price.

4 We refer to these double auctions as periodic to contrast
them with the CDA, in which clears are triggered by the reception
of new bids. Despite the name, the class of periodic double
auctions includes those with aperiodic clear policies, such as those
triggered by elapsed periods of inactivity, a randomly generated
schedule, or some predefined clearing schedule.
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For single-unit auctions, a bid simply indicates
whether it is to buy or sell, and at what price. A
multi-unit bid generalizes this by specifying a set of
price–quantity pairs, where negative quantities cor-
respond to offers to sell and positive quantities to
buy. We generally require that quantity be decreas-
ing in price-per-unit. An agent can make both buy
and sell offers at the same time—the decreasing-in-
price requirement ensures that the sell offers are at
higher prices than the buy offers.

We generally assume that each agent may have
only one active bid at a time—a new bid submission
replaces any old bids. An agent can modify its
current bid simply by submitting a new one. An
agent can effectively withdraw its bid by submitting
a null bid—one specifying zero quantity. However,
we often find it useful to support bid withdrawal as a
distinct activity.

Our analysis assumes that all multi-unit bids are
diÕisible: an agent willing to buy q units at a
specified price-per-unit would also be willing to
exchange qX, 0FqX

-q at that price. Similarly, an
agent willing to sell qX units at a specified price-
per-unit would accept a transaction to exchange qX,

X Ž0Gq )q units at that price recall that quantities
.for sellers are expressed as negative numbers . In

other words, agents may not submit ‘all or nothing’
bids. In the discussion below, we sometimes invoke
an assumption that each bid be for a single unit. For
purposes of incentive analysis, this restriction is
substantive. However, for describing our auction im-
plementation it is strictly a matter of convenience, as
we can translate any divisible multi-unit bid into an
equivalent set of single-unit bids.

Price quotes, like clears, can be triggered in sev-
eral ways. Our theoretical results in Section 4 are
restricted to sealed-bid auctions, which clear exactly
once, and do not generate price quotes. The algo-
rithms discussed in Section 5 apply to all of the
periodic price quote and clear policies.

If all exchanges mandated by the auction clearing
policy are to occur at the same price, we call such a
mechanism a uniform-price auction. One argument
in favor of uniform-price mechanisms is their per-
ceived fairness. A mechanism that generates multiple
prices for the same good at the same time may be
seen as unfair by the participants. A second benefit
of a uniform-price mechanism is that it simplifies the

auctioneer’s task of calculating price quotes. If dis-
criminatory prices are used, the auction may need to
calculate a separate price quote for each individual.

The AuctionBot supports both one- and two-sided
Žauctions the former as a simple restriction on the

.latter , and both continuous and periodic double
auctions.

( )3. M th-price and MH1 st-price rules

Consider a set of L single-unit bids, of which M
are sell offers and the remaining NsLyM are buy
offers. The M th-Price auction clearing rule sets the
price at the M th highest among all L bids. Similarly,

Ž .the Mq1 st-price rule chooses the price of the
Ž .Mq1 bid. Note that the M th price is undefined if

Ž .there are no sellers, and the Mq1 st price is
undefined if there are no buyers.

Ž .The M th- and Mq1 st-price rules use the same
method for determining which bids belong in the
transaction set. Let m denote the number of unit sell
offers at or below the clearing price, and n the
number of unit buy offers at or above the clearing

Ž .price. Let asmin m,n . The transaction set consists
of the a highest unit buy offers and the a lowest unit
sell offers. Auctions applying these rules may arbi-
trarily break ties and arbitrarily match successful buy
and sell bids to each other.

Ž .The significance of the M th and Mq1 st prices
follows from the fact that they determine the price
range that balances supply and demand. Consider a
simple case where there is one buyer willing to pay
no more than $ x, and one seller willing to accept no
less than $ y, with x)y. The M th price is $ x, and

Ž .the Mq1 st price is $ y. If we set the price for the
good above $ x, then one agent would be willing to
sell it, but no agent would be willing to buy it. At a
price below $ y, there is demand for one unit but no
supply. Only if the price is between $ y and $ x is the
excess demand zero.

We use this observation to define the price quote
corresponding to these auction rules. The standard
price information in a double auction is the bid–ask
quote. In a CDA, the bid and ask quotes correspond
to the highest unmatched buy offer and the lowest
unmatched sell offer, respectively. However, it is the
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information content of the price quote that is impor-
tant: the bid quote is the price that a seller must offer
in order to trade, and the ask quote reflects what a
buyer must offer to trade. The generalization to our
family of auctions is direct: the M th price is the ask

Ž .quote, and the Mq1 st price is the bid quote.
Notice that this definition generalizes the common
notion of bid–ask spread, since it applies even if the
buy and sell bids overlap.

Ž .In fact, the M th- and Mq1 st-price rules be-
long to a more general class of mechanisms called

w x w xk-double auctions 17 . The parameter kg 0,1 spec-
Ž .ifies the fraction between the Mq1 st and M th

prices at which the clearing price is set. The algo-
rithm we present in Section 5 applies to the entire
class of k-double auctions. However, our analysis in
the next section is concerned only with the two

� 4extreme points, kg 0,1 , of the equilibrium price
range.

The price quote reveals to agents salient informa-
tion bearing on whether their current bids would be
in the transaction set. Clearly, if its buy offer is
above the ask quote, or its sell offer is below the bid
quote, the agent has a winning bid. If an agent’s buy
offer is equal to the ask quote, and the ask quote is
strictly greater than the bid quote, then the agent’s
bid is winning. This follows from the fact that the
ask quote is the M th highest bid. Let b be the buyM

bid at the M th highest price. Suppose there are a
Ž .total of x buy bids at or above b . If the Mq1 stM

highest bid is strictly less than b , there must beM

Myx sell bids at or above b , and therefore MyM
Ž . . Ž .Myx sx sell bids at or below the Mq1 st bid.
Therefore b is in the current match set. Similarly,M

if a seller’s offer equals the bid quote and is strictly
less than the ask quote, its bid is winning.

However, if the bid and ask quotes are equal,
neither buyers nor sellers with offers at that price can
determine whether they are winning or losing. In

Ž .both examples in Table 1, the M th prices Mq1 st
prices$2. In Example 1a, one buy offer would be
unmatched if the auction cleared. In Example 1b,
one sell offer would be left unmatched. Although the
price setting rules will not leave both buy and sell
bids unmatched at the clearing price, it is not possi-
ble to tell from the price quote which side is guaran-
teed to clear completely and which will be subject to
the tie-breaking criteria.

Table 1
Ž .Examples in which a a buy bid is unmatched at the M th price,

Ž . Ž .and b a sell bid is unmatched at the Mq1 st price

Ž . Ž .a b
Buy 1 unit at $2 Buy 1 unit at $2
Buy 1 unit at $2 Sell 1 unit at $2
Sell 1 unit at $2 Sell 1 unit at $2

When Ms1, the M th price is simply the highest
Žbuy offer assuming it is greater than the seller’s

. Ž .reservation price , and the Mq1 st price corre-
sponds to the second highest. The highest, or first,
price expressly offered is used by the classic English,

w xDutch, and first-price sealed-bid auctions 10,14 .
The second-price rule was proposed and analyzed by
Vickrey in his seminal work establishing the field of

w x 5auction theory 19 . When M)1, the M th- and
Ž .Mq1 st-price auctions correspond to the multi-unit
generalizations of Dutch and English auctions stud-

w xied by McCabe et al. 11 .

4. Incentive compatibility analysis

Ž .The M th- and Mq1 st-price rules are symmet-
ric with respect to their treatment of buyers and
sellers. We therefore present the proof of our incen-

Žtive compatibility result below in detail for the Mq
.1 st-price, sealed-bid auction, and leave it to the

reader to make the necessary minor adjustments to
get the analogous result for the M thPrice, sealed-bid
auction. Note that rather than using M—the number
of units offered for sale—we could define the rule in
terms of N, the number of unit buy offers. The
pricing rule in which we count up N units from the

Ž .lowest bid is identical to the Mq1 st-price rule,
Ž .and the Nq1 st-price rule is identical to the M th.

5 In our AuctionBot implementation, an English auction uses
the M th-price rule, issues price quotes after every bid, and clears
once based on a period of bidder inactivity. Despite the fact that
the English auction uses the highest-mentioned buy offer, under

Ž .the independent private values model discussed in Section 4 , its
equilibrium outcome is identical to the second-price auction, since
buyers bid only in increments from their counterparts. There is a
corresponding equivalence between the outcomes, and the strate-
gic problems faced by agents, in the first-price sealed-bid and
Dutch auctions.
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In the following theoretical analysis, we assume
that agents have independent priÕate Õalues for the
goods, which means that each agent knows its own
valuation, which is unaffected by the value other

w xagents place on the good 10 .
An auction is incentiÕe compatible if the agents

optimize their expected utilities by bidding their true
valuations for the good. This is a desirable feature
because an agent’s decision depends only on its local
information, and it gains no advantage by expending
effort to model other agents. It is important to note
that the concept of incentive compatibility is mean-
ingful only under the independent private values
assumption. If the agents have uncertain correlated
values, then, in any of the auctions considered here,
an agent should generally bid below its estimated

w xvaluation in order to avoid the ‘winner’s curse’ 13 .
An auction is indiÕidually rational if its alloca-

tions do not make any agent worse off than had the
agent not participated.

An allocation is efficient if there are no further
gains from trade possible. This implies that the
goods are allocated to the agents who value them
most highly.

Uniform-price auctions tend to promote efficiency
when there are multiple buyers and sellers. Consider
four truthful single-unit bids: two offers to sell, for
$ x and $ z, and two offers to buy, for $w and $ y,
where w)x)y)z. Let W, X, Y, and Z refer to
the agents who bid $w, $ x, $ y, and $ z, respectively.
There are two obvious candidate allocations. In the
first, W and Z trade. This trade could be supported
by a uniform-price rule that sets the price between
$ x and $ y. Most importantly, this trade allocates the
goods to the agents who value them most highly—
agent W buys one and agent X keeps one. In the
second allocation, W trades with X, and Y trades
with Z. These trades would necessarily occur at two
different prices, and the agents who end up with the
goods have the first and third highest valuations.
This allocation is inefficient because the agents X
and Y could both be made better off by a further
trade between them. Although the second allocation
is an improvement over the initial endowments, it is
dominated by the uniform-price allocation.

Ž .As noted above, for Ms1 the Mq1 st-price
auction is the well-studied second-price mechanism.

w xVickrey 19 showed that the sealed-bid version of

this mechanism is incentive compatible for the buy-
ers. The intuition behind this result is as follows.
Recall that the agent with the highest buy offer wins
the good but pays the price of the second highest
offer. Clearly, bidding more than the good’s true
value is irrational because it exposes the agent to a
potentially unprofitable transaction while not increas-
ing the likelihood of a profitable one. By bidding
less than its true value, the agent decreases the
probability that it wins the bid, but does not change
the amount it pays if it wins. Both strategies make
the buyer worse off than bidding truthfully.

We can generalize this result to single-unit buyers
Ž .in the Mq1 st-price, sealed-bid auction, allowing

Žmultiple sellers as well as other agents buyers or
. Ž .sellers with multi-unit divisible bids.

Ž .Theorem 1. The Mq1 st-price sealed-bid auction
is incentive compatible for single-unit buyers under
the independent private values model.

Proof. Let us define a full ordering of the bids as
one where they are in decreasing order by price, and
where multi-unit bids are treated as independent
single-unit offers. The clearing price is determined

Ž .by the Mq1 st order statistic, b , of the bids.Mq 1

Let i be a single-unit buyer whose independent
valuation for one unit of the good is Õ and whosei

bid is b. Buyer i’s expected utility is the product of
the probability of winning a unit of the good and the
utility gained from winning:

<Pr b)b qPr bsb Pr win bsbŽ . Ž . Ž .Mq 1 Mq1 Mq1

= Õ yb .Ž .i Mq1

If Õ yb is positive, the buyer wants to maxi-i Mq1

mize the probability of winning. Because Õ )b ,i Mq1

the probability of winning is 1 when bsÕ . Ifi

Õ yb is negative, the buyer wants to minimizei Mq1

the probability of winning. In this case, the probabil-
ity of winning is zero if bsÕ . It follows that settingi

bsÕ is always an optimal strategy. Moreover, truthi

telling is a dominant strategy because it is optimal
regardless of the other agents’ strategies. I

Ž .It might be hoped that the Mq1 st-price auction
would also be incentive compatible for single-unit
sellers. Alas, this is not the case. The reason is that if

Ž .the Mq1 st price falls on a seller’s bid, that seller
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can increase its profits by increasing its bid up to the
M th price. Thus,the seller does not maximize its
utility by being truthful. As an illustration, consider
the simple case where a single buyer values the good
at $10 and a single seller values the good at $0. If
the auction were incentive compatible for sellers,
then the seller would maximize its utility with a bid
of $0. If the seller did so, it would receive the
second-price payment of $0. Clearly the seller could
do better by bidding as high as $10—selling the
good for a higher price. In contrast, the buyer could
not reduce the amount it pays by reducing its own
bid.

Ž .The symmetry between the M th and Mq1 st
rules yields a counterpart of Theorem 1 for the
M th-price auction.

Theorem 2. The M thPrice sealed-bid auction is
incentive compatible for single-unit sellers under the
independent-private-values model.

Proof. The proof is identical to that of Theorem 1,
with appropriate reversals of inequalities and substi-

Ž .tutions of sellers for buyers, and M th for Mq1 st.
I

Ž .The Mq1 st and M th-price auctions offer a
choice between incentive compatibility for buyers or
for sellers. The only way to get incentive compatibil-
ity for both is if some party is willing to subsidize

w xthe auction. Myerson and Satterthwaite 15 show
that there does not exist any bargaining mechanism
that is individually rational, efficient, and Bayesian
incentive compatible for both buyers and sellers, that
does not require outside subsidies.

We next consider another relaxation of the theo-
rems’ conditions, specifically the restriction to sin-

Ž .gle-unit bids. The generalized Vickrey auction GVA
w x8,18 —an extension of mechanisms developed by

w x w x w xVickrey 19 , Clarke 2 , and Groves 7 —is incen-
tive compatible for all bidders. 6 The GVA is a

w xdirect reÕelation mechanism 6 ; agents submit their
Žreservation prices equivalent to their utility func-

6 To ensure incentive compatibility for both buyers and sellers
in the GVA, it may be necessary to subsidize the mechanism. For
the purposes of finding an incentive compatible mechanism for
multi-unit bids, we restrict the discussion to only single-sided
GVA mechanisms.

.tions under the independent private values model as
bids. The GVA calculates an efficient allocation of
the goods, and net payments for each agent. Agent
j’s payment is its impact on the social welfare: the
value that the other agents would achieve if j were
not present, minus the value that they obtain with j
included.

However, the GVA, even when restricted to a
single-sided auction, does not produce a uniform
price. Consider an example with two buyers and two
identical units of a good. Agent A values one unit of
the good at $5, and two units at $7. Agent B values
one and two units at $5 and $8, respectively. The
efficient allocation is to give one unit to each agent.
However, the GVA payment for agent A is $8y$5
s$3, whereas the payment by agent B, for a unit of
the same good, is $2. Thus, the GVA mechanism
does not satisfy our goal of a uniform-price, incen-
tive compatible mechanism for buyers who desire
multiple units.

Ž . Ž .The Mq1 M thPrice auction computes a uni-
form price, but is not incentive compatible for

Ž . Ž .multi-unit buyers sellers . Consider an Mq1 st-
price auction in which a seller offers one unit of a
good for $1 and the second unit for $10. There is a
single buyer with reserve prices $7 and $5 for the
first and second units of the good, respectively. If the

Ž .buyer bids its true values, then the Mq1 st-price is
its bid for the second unit, and it will receive one
unit for $5. However, if the buyer lowers its bid for
the second unit to $1, it would receive one unit for
$1. The common principle behind the incentive re-
sults for the GVA and those in Theorems 1–2 is that
an agent’s payment is a function of other agents’
bids, but not of its own. When we admit multi-unit

Ž .bids in the Mq1 st-price auction, the price that the
buyer pays for one unit may be set by its bid for the

w xother unit, creating a built-in collusion 19 . As a
result, it is suboptimal for the buyer to place truthful
multi-unit bids. We now show that this result gener-
alizes to a broad class of uniform-price auctions.

Theorem 3. There does not exist an individually
rational, uniform-price auction with multi-unit allo-
cations that is Bayes–Nash incentive compatible for
buyers or sellers, and guaranteed to produce efficient
allocations.
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Proof. We consider the case of incentive compati-
bility for buyers only. By symmetry, the theorem
extends to the case of incentive compatibility for
sellers only.

It is sufficient to show that there exists a situation
for which the properties do not all hold. Assume
there are two units of a good, and two buyers,
denoted is1, 2. Each buyer’s utility can be de-
scribed by reservation prices. Buyer i’s marginal
utility for the jth unit of the good is Õ j. Assume thati

marginal utility is nonincreasing with j. Let r bei
Ž .the bid reported by agent i, and p r1,r2 the price

determined by the auction as a function of the bids.
w xBy the reÕelation principle 6 , we can restrict our

attention to a mechanism in which the buyers report
their marginal valuations for each unit of the good.

Ž 1 2 . jBuyer i sends a report r s r , r , where r is itsi i i i

reported marginal utility for the jth unit of the good.
If the auction is efficient, it must allocate k units

of the good to an agent if the agent reported k of the
two highest marginal valuations. If it is individually
rational and incentive compatible, no agent pays
more than its reported value for an allocation.

Consider the situation where the marginal valua-
tions are ordered Õ2 -Õ2 -Õ1 -Õ1. Assume that1 2 2 1

buyer 1 reports its true valuations, but buyer 2
reports r /Õ , such that2 2

r 2 -r 2 -r1 -r1. 1Ž .1 2 2 1

If the auction is efficient, each agent receives one
unit of the good. Incentive compatibility entails that
Ž . Ž .p Õ , r Gp Õ , Õ , otherwise buyer 2 would not1 2 1 2

optimize by reporting truthfully. But because this
must be true for any r and Õ that obey the2 2

inequalities, and because the auction receives only
Ž . Ž .the reports, we must have p Õ , r sp Õ , Õ for1 2 1 2

any such values and reports.
This further implies that the price is arbitrarily

close to the lowest reported value,

p r ,r Fr 2 qe 2Ž . Ž .1 2 1

for any e)0.
Now consider the situation where marginal valua-

tions are ordered 0-Õ2 -Õ1 -Õ2 -Õ1 , and Õ1 sÕ1
1 1 2 2 1 2

qs . If both buyers report their true valuations, then
Žbuyer 1 receives nothing and thus zero gain in

.utility from the auction allocation. But if buyer 2
were to report truthfully and buyer 1 were to report

2 2 1 1 Ž .r sÕ and r )Õ , then Eq. 1 holds and buyer 11 1 1 2
Ž .would win one unit. Because Eq. 2 holds for

Ž . 10-e-s , it follows that p r , r -Õ , giving1 2 1

buyer 1 a positive gain in utility. This violates
incentive compatibility, revealing a contradiction
among the posited auction properties. I

Although the incentive compatibility properties of
Ž .the M th- and Mq1 st-price sealed-bid auctions are

somewhat restricted, we see from Theorems 1–3 and
the impossibility result from Myerson and Satterth-
waite that we can extend their scope only by com-
promising some other desirable properties. Thus
when we consider it important to have a single price
for a commodity, it may well make sense to choose a
mechanism from this family.

5. Implementation

A great deal of work in auction theory has fo-
cused on the economic efficiency of various mecha-
nisms. Relatively little research has focused on their
computational efficiency. Whereas it is true that in
most cases the costs of communication outweigh the
costs of managing the auction, it is still useful to
define efficient algorithms for the mediators. This is
especially relevant to auctions covering multiple
commodities, in which clearing prices are often de-
termined by combinatorial optimization. Rothkopf et

w xal. 16 study restrictions in allowable multicommod-
ity bundles that enable tractable solution of the auc-
tion’s optimization problem.

Even when each auction faces a tractable prob-
lem, we might obtain significant computational sav-
ings by careful management of the communication

w xand clearing operations. Andersson and Ygge 1
apply hierarchical market structures for distributing
the calculation of market-clearing prices and alloca-
tions. Their COTREE algorithm allows designers to
make tradeoffs between the number of messages, and
the dimensionality of local excess demand calcula-
tions.

In this section, we present an efficient algorithm
Ž .for the M th- and Mq1 st-price family of auctions.

Our analysis reveals tradeoffs between bid-processing
methods based on the expected pattern of bid up-
dates and clearing events.
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5.1. Operations

To support the core activities discussed in Section
2, an auction algorithm must implement the follow-
ing operations:

InsertrrrrrRemove: place a new bid into the data
structure, or remove a current one.
Price Quote: calculate the bid and ask quotes
given the current set of bids.
Clear and Match: calculate a clearing price and
remove all of the bids that match.
Note that when an agent modifies its bid, the

auction can implement this by removing the agent’s
current bid and inserting a new one.

Perhaps the most straightforward implementation
of the rules of Section 3 would be to maintain a
sorted list of all bids, and perform clears as de-
scribed. Assume that we have LsMqN single-unit

Ž .bids in a sorted list. Inserting a new bid takes O L
Ž .time. Generating a price quote takes O M time.

Removing a bid can be accomplished in constant
Ž .time if a secondary mechanism such as a hash table

is used to associate bidders with their bids. Clearing
Ž .and matching is an O L operation because we have

to trace through all of the bids to find the ones that
matched. We could do somewhat better—clearing in
Ž Ž ..O min M, N —by employing two lists, one for buy

bids and one for sells. In either case, when the
number of bids is small, a sorted-list algorithm might
be fine. We can, however, do better for large M and
N.

5.2. The 4-heap algorithm

Our algorithm uses four heap structures to orga-
nize the bids. We distinguish bids by whether they
represent buy or sell offers, and whether or not they
are in the current match set. The four heaps are:

B : Contains all of the buy bids that are in thein

current match set. The heap priority is minimal
price, so that the lowest priced bid is on top. The

Ž Ž ..size of this heap is O min M, N .
B : Contains all of the buy bids that are not inout

the current match set. The heap priority is maxi-
Ž .mal price. The size of this heap is O N .

S : Contains all of the sell bids in the match set,in

prioritized by maximal price. The size of this heap
Ž Ž .is O min M, N .

Fig. 1. Schematic diagram of bids arranged in the four heaps.

S : Contains all of the sell bids not in the matchout

set, prioritized by minimal price. The size of this
Ž .heap is O M .

Fig. 1 illustrates the relationships between the
heaps.

Recall that a heap data structure is a complete
binary tree, with the property that each node has a

w xpriority not exceeding its parent’s 3 . Inserting a
Ž .new node into the heap put , or removing the top

Ž . Ž .node get each take O log K time, where K is the
size of the heap.

The 4-HEAP algorithm ensures several constraints
among the heaps. First, the number of units in Bin

must equal the number in S . The rest of the con-in

straints are characterized in terms of the top nodes of
each heap. Let b , b , s , and s be the top nodesin out in out

Ž .of B , B , S , and S , respectively. Value n isin out in out

the value of node n. We enforce the following
constraints:

Ž . Ž .Ø Value b GValue bin out
Ž . Ž .Ø Value s GValue sout in
Ž . Ž .Ø Value s GValue bout out
Ž . Ž .Ø Value b GValue sin in

w xMcCabe and Smith 12 also study the design of
uniform-price, double auctions, and organize their
bids into four sets, although they use sorted lists
rather than heaps.

5.3. Complexity analysis

The complexity of bookkeeping in the 4-HEAP

algorithm comes from the need to keep B and Sin in

the same size while performing inserts and removes.
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To simplify the description, we restrict attention to
single-unit bids. The extension to multi-unit bids is
relatively straightforward, and is discussed in Section
5.4.

5.3.1. Insert
When a new bid comes in, the algorithm may

need to do more than place it in one of the heaps.
Using the example depicted in Fig. 1, if the auction
receives a sell offer for $6, not only would it be
placed onto S , but the top bid in B must bein out

transferred into B to equilibrate the in heaps. Thisin

requires one get from Bout, one put into S and onein

put into B . Receiving a buy bid also requires asin

many as three heap operations. Thus, the insert
Žoperation for an arbitrary bid is bounded by O log

.L .
In general, when a new sell bid, s , arrives,new

there are three possible actions. Either the new bid
forms a new match with the top bid in B , or itout

displaces a bid in S , or it is placed into S . Thein out

pseudocode is shown in Fig. 2.
The logic for new buy bids is very similar, with

all of the Bs and Ss switched, and the inequalities
reversed.

5.3.2. RemoÕe
To remove bids efficiently, we employ an exter-

nal lookup mechanism, such as a hash table, to
locate the bid within its containing heap in constant
time. We can then delete this node from its heap in
logarithmic time. If the bid is in one of the out
heaps, we are finished. However, if it is in S orin

B , we must also transfer the top bid from the otherin

in heap to its corresponding out heap. Thus, in the
worst case, removing a bid requires three heap opera-

Ž .tions, for a total time bounded by O log L .

5.3.3. Clears and quotes
A price quote can be generated simply by inspect-

Ž .ing the tops of the heaps. The bid quote, or Mq1 st
Ž Ž . Ž ..price, is max Value s , Value b . The ask quote,in out

Ž Ž . Ž ..or M th price, is max Value s , Value b . Theout in

constraints on the heaps ensure that the ask quote is
above the bid quote. Calculating a price quote is a
constant time operation.

Clearing prices for the M th-price rule are set to
Ž .the ask price. The Mq1 st auction clears at the bid

price. We match buyers and sellers by disassembling
the in heaps, B and S . Matching necessarily takesin in

time proportional to the number of bids matched,
Ž Ž ..which is O min M, N .

5.4. Multiple-unit auctions

The 4-HEAP algorithm can be extended to allow
nodes to represent multi-unit bids, with a relatively
simple modification. Bids transferred between in and
out heaps may need to be split in order to maintain
an exact equivalence in the number of units stored in
the two in heaps. Similarly, insertion or removal of a
multi-unit bid may entail several nodes be trans-
ferred across the complementary pair of in and out
heaps.

A simple example illustrates the point. Agent A
submits a bid to sell two units at $3. The auction
places this bid into S . Agent B now submits a bidout

to buy one unit at $5. The auction puts the new bid

Fig. 2. Pseudocode for receiving a new sell bid.



( )P.R. Wurman et al.rDecision Support Systems 24 1998 17–2726

into B , and splits the first bid, moving one unit intoin

S and leaving one unit in S . When the auctionin out

receives a third bid, from agent C to buy two units at
$4, it moves the remaining unit of the first bid from
S to S , and splits the third bid between B andout in in

B .out

It is easy to see that any multi-unit bid may, over
time, be split entirely into single-unit bids. Hence,
the worst-case complexity of bid operations in the
4-HEAP algorithm must be characterized in terms of
number of units, rather than number of bids.

5.5. Tradeoffs between operation costs

Based on the analysis of operations above, we see
Žthat the 4-HEAP algorithm can process bids insert

. Ž .and remove in O log L time, issue price quotes in
Ž . Ž .O 1 constant time, and perform clears in
Ž Ž ..O min M, N time.
As a benchmark, we introduce the simple sealed-

bid algorithm, which makes a different tradeoff be-
tween the computational costs of the respective oper-
ations. This algorithm works as follows. As each bid
is received, append it to one of two unordered lists,
representing the buy and sell bids. This is a constant
time operation. To clear the auction, sort the buy
offers in descending order by price, and the sell
offers in ascending order. While the top buy offer is
greater than or equal to the top sell offer, remove the
front element of each list and place them in the
transaction set. The computational complexity of this
algorithm is in terms of R, the total number of price

Ž .points in the bids in contrast to the number of units .
For instance, an agent who bids to sell two units at
$5 and two at $10, has submitted one bid which has
two price points and offers four units. The clear is an
Ž .O R log R operation. A price quote is the same as

a clear, except that the original lists are not de-
stroyed.

When bids are restricted to single units, RsL,
and both the 4-HEAP and simple sealed-bid algo-

Ž .rithms require O L log L total time over the auc-
tion’s life cycle, assuming a constant number of
quotes and clears, and a constant number of bid
revisions per unit bid. The simple sealed-bid algo-
rithm is most appropriate for single-clear, sealed-bid
auctions, since price quotes are relatively expensive.
The 4-HEAP algorithm offers reduced clear-time la-
tency at the expense of more work during the bid

processing stage, and will be clearly superior in
settings demanding frequent price quotes. We expect
these observations hold for reasonably large sized
bids and moderate bidding activity.

However, when there is a large variation in the
sizes of bids, and a high frequency of withdraws and
edits, it is possible that the simple sealed-bid algo-
rithm will outperform the 4-HEAP algorithm even in
auctions with frequent price quotes and multiple
clears.

6. Conclusion

This paper contributes to both the theoretical and
practical understanding of a useful family of periodic
double auction mechanisms. We show that the M th-
Price sealed-bid auction is incentive compatible for

Ž .single-unit sellers, and that the Mq1 st-price
sealed-bid auction is incentive compatible for
single-unit buyers. We also show, through a combi-
nation of our own results and those in the literature,
that the incentive compatibility result cannot be ex-
tended to multi-unit bids, or simultaneously to both
buyers and sellers.

We also present an algorithm that processes bids
incrementally in order to reduce the time necessary
for auction clears and price quotes. Bid processing
requires logarithmic time, price quotes constant time,
and clears linear time. Depending on the number and
sizes of bids expected, and the relative frequencies of
the various auction operations, this algorithm may
offer advantages over the more straightforward ap-
proach.

Auctions have already begun to play an important
role in electronic commerce. As automation of online
negotiation becomes more widespread, we expect
that developers will continue to introduce innovative
auction mechanisms, and to apply them in novel
commerce settings. Careful attention to both the
economic incentive properties and computational re-
quirements of auction mechanisms will undoubtedly
be an important ingredient of their success.
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