
Proceedings, Industrial Electronic Seminar 1999(IES’99),
Graha Institut Teknologi Sepuluh Nopember, Surabaya, October 27-28, 1999

1

Design and Implementation of Parallel Batch-mode Neural Network on
Parallel Virtual Machine

Adang Suwandi Ahmad1, 2, Arief Zulianto1, Eto Sanjaya1

1Intelligent System Research Group
2Department of Electrical Engineering, Institut Teknologi Bandung

E-mail: asa@ISRG.ITB.ac.id, madzul@ITB.ac.id, eto@ISRG.ITB.ac.id

Abstract
Artificial Neural Network (ANN) computation process is a parallel computation process that should run

using parallel processor. Budget constraint drives ANN implementation using sequential processor with
sequential programming algorithm. Applying specific algorithm to existing sequential-computers offer
emulation of ANN computation processes executes in parallel mode. This method can be applied by building a
virtual parallel machine that featuring parallel-processing environment. This machine consist of many
sequential machine operated in concurrent mode utilize operating system capability to manage inter-process
communication and resource computation process, although this will increase complexity of the
implementation of ANN learning algorithm process.

This paper will describe the adaptation and development of sequential algorithm of feedforward learning
into parallel programming algorithm on a virtual parallel machine based on PVM (Parallel Virtual Machine
[5]) that was developed by Oak Ridge National Laboratory. PVM combines UNIX software calls to present a
collection of high-level subroutines that allow the user to communicate between processes; synchronize
processes; spawn, and kill processes on various machines using message passing construct. These routines are
all combined in a user library, linked with user source code, before execution. Some modifications are made to
adapt PVM into ITB network environment.

KEYWORDS: artificial neural network; backpropagation; parallel algorithm; PVM;

1 Introduction

Artificial Neural Networks (neural-nets) are
used for the successful solution of many real
world problems. However, training these networks
is difficult and time consuming. One way to
improve the performance of training algorithms is
to introduce parallelism.

The most important factor has been the
unavailability of parallel processing architectures.
These architectures are very expensive, thus out
of reach of nearly all neural-net researchers.
Another limiting factor was the difficulty in
porting code between architectures, as a large
number of different architectural possibilities
existed.

These and other factors have limited the
research opportunities. Fortunately, technical and
software advances are slowly removing the
barriers, allowing access to parallel programming
paradigm. An example of improving opportunity
for researchers is the availability of mature
parallel libraries such as PVM (Parallel Virtual
Machine [5]). These libraries consist of a
collection of macros and subroutines for
programming a variety of parallel machines as

well as support for combining a number of
sequential machines into a large virtual
architecture.

Successful parallel algorithms are normally
associated with a decrease in execution time
when compared with the implementation using
sequential algorithm.

2 Conceptual Overview

2.1 Artificial Neural Network

Artificial Neural Network is a computation
model that simulates a real biological nervous
system. Neural-nets are commonly categorized
in terms of their learning processes into:

1. Supervised learning, the training data set
consists of many pairs of input-output
training patterns.

2. Unsupervised learning, the training data
set consist of input training patterns only,
the networks learns to adapt based on the
experiences collected through the previous
training patterns.

Backpropagation (BP) is a well-known and
widely used algorithm for training neural-net.

Proceedings, Industrial Electronic Seminar 1999(IES’99),
Graha Institut Teknologi Sepuluh Nopember, Surabaya, October 27-28, 1999

2

This algorithm involves two phases. During the
first phase, an input is presented and propagated
forward through the network to compute the
output value (ro) for r output neuron.

= ∑

p
pqpq owfo (1)

with qo the output activation of each neuron in

the hidden layer, qpw the weight connection

between the p-th input neuron and the q-th
hidden neuron and po the p-th feature vector

= ∑

q
qrqr owfo (2)

with ro the output activation for r-th output

neuron, rqw the weight connection between q-th

hidden neuron and r-th output neuron, and

qo the hidden layer activation

The output is then compared with target output
values, resulting in an error value (rδ) for each

output neuron. The second phase consist of a
backward pass, where the error signal is
propagated from the output layer back to the input
layer. The δ 's are computed recursively and used
as basis for weight changes.

))(1(rrrr oto −−=δ (3)

with rδ the r-th output neuron activation's and

rt the target value associated with the feature

vector

∑−=
r

rrqqqq woo δδ)1((4)

with rδ the r-th output neuron'sδ and rqw the

weight connection between the q-th hidden
layer neuron and r-th output layer neuron

And the gradient between input and hidden
layer:

pqpq oδ=∇ (5)

with qδ the hidden layer's δ for the q-th neuron

and po the p-th input feature vector

qrrq oδ=∇ (6)

with rδ the output layer's δ for the r-th neuron

and qo the q-th input feature vector

2.2 Parallel Processing

A variety of taxonomies uses to classify
computer exist. Flynn's taxonomy classifies
architectures by the number of instruction and

data streams the architecture can process
simultaneously [6], [7]. The categories are:

1. SISD (Single Instruction Single Data
stream);

2. SIMD (Single Instruction Multiple Data
stream);

3. MISD (Multiple Instruction Single Data
stream);

4. MIMD (Multiple Instruction Multiple
Data stream)

For MIMD systems, there are two set models
based on intensity level of processors' interaction
i.e. tightly coupled architecture, and loosely
coupled architecture.

Two different programming paradigms have
evolved from the architectural models:

1. shared memory programming using
constructs such as semaphores, monitors
and buffers (normally associated with
tightly coupled systems)

2. message passing programming using
explicit message-passing primitives to
communicate and synchronize (normally
associated with loosely coupled systems)

In performance measurements, speedup is
used as reference in determining the success of a
parallel algorithm. Speedup is defined as the
ratio between the elapsed time using m
processors for the parallel algorithm, and the
elapsed time completing the same task using the
sequential algorithm with one processor.

The granularity is the average process size,
measured in instructions executed. Granularity
does effect the performance of the resulting
program.

In most cases overhead associated with
communications and synchronization is high
relative to execution speed so it is advantageous
to have coarse granularity (typified by long
computations consisting of large numbers of
instructions between communication points, i.e.
high computation-to-communication ratio)

2.3 Possibilities for Parallelization

There are many possibilities method for
parallelization [9], such as:
1. map each node to a processor
2. divide up the weight matrix amongst the

processors

Proceedings, Industrial Electronic Seminar 1999(IES’99),
Graha Institut Teknologi Sepuluh Nopember, Surabaya, October 27-28, 1999

3

3. places a copy of entire network on each
processor

Map each node to a processor so that the
parallel machine becomes a physical model of the
network. However, this is impractical for large
networks on all but perhaps a massively parallel
architecture since the number of nodes (and even
nodes per layer) can be significantly greater than
the number of processors.

Divide up the weight matrix amongst the
processors and allow an appropriate segment of
the input vector to be operated on at any
particular time. This approach is feasible for an
SIMD, shared memory architecture and suggests
a data parallel programming paradigm.

Places a copy of the entire network on each
processor, allowing full sequential training of the
network for a portion of the training set.

Figure 1. Places a copy of entire network on each
processors

The results (i.e. the final weights) are then
averaged to give the overall attributes of the
network. This would result in near-linear speedup,
and could be pushed to greater than linear
speedup if the error terms were collected from the
feedforwards and utilized for a single
backpropagation step. Such a procedure is known
as batch updating of the weights. However, as
attractive as the potential speedups associated
with these methods are, they tend to stray away
from true parallelization of the sequential method
and also have a tendency to taint the results.

2.4 PVM (Parallel Virtual Machine)

The UNIX operating system provides for inter
process communication. Unfortunately, these
routines are difficult to use, as available routines
are at an extremely low level. PVM (Parallel
Virtual Machine [5]), combines these UNIX
software calls to present a collection of high level

subroutines that allow users to communicate
between processes; synchronize processes;
spawn, and kill processes on various machines
using message passing construct. These routines
are all combined in a user library, linked with
user source code, before execution.

The high-level subroutines are usable over a
wide range of various different architectures,
consequently different architectures can be used
concurrently to solve a single problem.
Therefore PVM usage can resolve huge
computational problem by using the aggregate
power of many computers.

PVM consists of a daemon process running
on each node of virtual machine (host). The
daemons are responsible for the spawning of
tasks on host machines, communication, and
synchronization between tasks ordered by the
user process using PVM library and software
constructs.

The daemons communicate with one another
using UDP (User Datagram Protocol) sockets. A
reliable datagram delivery service is
implemented on top of UDP to ensure datagram
delivery. TCP (Transmission Control Protocol)
provide reliable stream delivery of data between
Ethernet hosts. These sockets are used between
the daemon and the local PVM tasks, and also
directly between tasks on the same host or
different hosts when PVM is advised to do so.
Normal communication between two tasks on
different hosts comprises a task talking to the
daemon using TCP. The daemons communicate
using TCP, and finally the daemon delivers the
message to the task using TCP.

Direct communication task-to-task is
possible if PVM advised to do so by using
specific function in the source code. In this
mode, TCP sockets are used for direct
communications between various tasks.

The direct communication mode ought to be
faster, but prevents scalability as the number of
sockets available per task is limited by operating
system.

3 Implementation

3.1 PVM Implementation,
The main step to implemented PVM in a live
network is:

q hosts selection, with consideration in hosts'
CPU resource utilisation

Proceedings, Industrial Electronic Seminar 1999(IES’99),
Graha Institut Teknologi Sepuluh Nopember, Surabaya, October 27-28, 1999

4

q porting the source code to host's architecture

The common problems in utilizing PVM are:
q Varying CPU-resource utilisation of PVM

nodes. If one machine is severely loaded
compared to other in virtual machine a
bottleneck occurs, as PVM provides no
dynamic load balancing.

q Varying on network loads. High network
utilisation will decrease performance, as
communication time will increase as a result
of lower bandwidth available to the user.

3.2 Batch-Mode Training Algorithm

Instead of traditionally pattern-mode training,
there is batch-mode training in terms of weights
updating method. The difference between batch-
mode and pattern mode training algorithms is the
number of training examples propagated through
the net before a weight update. Pattern-mode
training algorithms propagate only one training
pattern before weight update. Batch-mode
algorithms propagate the complete training set
before a weight update.

Figure 2. Comparison between batch-mode training
and online mode training

In order to obtain a better performance of
parallel algorithm, since in a message-passing
construct cost of communication is a crucial issue,
it is important to have bigger grain-size. For that
matter, batch-mode algorithm is better than
pattern-mode.

3.3 Parallelizing Scheme

Parallelizing scheme of batch-mode updating
implemented with some forwardpasses operated

concurrently in some PVM's slaves-process to
obtain training errors, and then master-process
adjust neural-net’s weights using slaves’ errors
(figure 3.).

Inisialisasi
arsitektur

Inisialisasi
bobot awal

Inisialisasi set
training

Propagasi balik

Ubah bobot

Forwardpass

error<=
max_error

Start

Stop Y

ForwardpassForwardpass ForwardpassForwardpass

N

Figure 3. Parallelizing scheme using batch-updating

3.4 Putting it Together

Spawn slaves

Inisialisasi
arsitektur

Inisialisasi
bobot awal

Inisialisasi set
training

Propagasi balik

Ubah bobot

PVM

Inisialisasi
dengan

parameter dari
master

ForwardPass

Inisialisasi
dengan

parameter dari
master

ForwardPass

error<=
max_error

Y

N

PVM

Y

Figure 4. Implementation parallel batch-updating
on PVM

Implementation of this parallel algorithm on
PVM is based on standard master-slave model.
The complete parallel algorithm using batch-
mode-updating (figure 4.) is as follows:
1. Master initializes neural-net architecture,

initial weights, and training set
2. Master spawns slaves and sends copy of

neural-net architecture and initial weight
values to each slaves

3. Master sends to each slave its part of the
training set

4. Master waits output from slaves
q Each slave propagates its parts of the

training set forward through the net.
q Each slave return its output to master
q Master accumulate all partial values

5. Master backpropagate the errors and adapts
the weight values

6. The algorithm is repeated from step 3 until
the weights converge.

7. Master kill slaves

Proceedings, Industrial Electronic Seminar 1999(IES’99),
Graha Institut Teknologi Sepuluh Nopember, Surabaya, October 27-28, 1999

5

4 Results

Illustration of PVM on this experiment (figure
1.) depicted a parallel virtual machine consist of
heterogeneous (various architectures and
operating systems) computers connected in a
network.

Figure 5. Parallel Virtual Machine

This implementation produces speedup as
follows (figure 6.). The amount of speedup
obtainable is influenced by:
q number of slaves,
q number of iterations,
q size of training set

Figure 6. Speedup vs. number of slaves

5 Conclusions

q PVM can be implemented in a live-network,
with some customizing regarding to resource
sharing in multi-user environment, security
reasons, and load balancing

q Parallelizing of batch-mode neural-net on
PVM gives improved performance over
sequential implementations.

q Optimum performance obtained for neural-
net with large enough training set, since it
will have a bigger grain-size.

References:

[1] Freeman, J.A, and Skapura, D.M, "Neural
Networks: Algorithms, Applications, and
Programming Techniques", Addison
Wesley, 1991

[2] http://www.GNU.org/, "GNU's Not
UNIX", The GNU Project and The Free
Software Foundation (FSF), Inc., Boston,
August 27, 1998

[3] Hunt, Craig, "TCP/IP Network
Administration", O'Reilly and Associates,
Second Edition, December 1997

[4] Geist, A., A., Begeulin, J., Dongarra, W.,
Jiang, R., Manchek, and V., Sunderam,
"PVM: Parallel Virtual Machine -–A
Users' Guide and Tutorial for Networked
Parallel Computing", Oak Ridge National
Laboratory, May 1994

[5] Coetzee L., "Parallel Approaches to
Training Feedforward Neural Nets", A
Thesis Submitted in Partial Fulfillment for
the Degree of Philosophiae Doctor
(Engineering), Faculty of Engineering
University of Pretoria, February 1996

[6] Lester, Bruce P., "The Art of Parallel
Programming", Prentice Hall International
Editions, New Jersey, 1993

[7] Hwang, Kai, "Advance Computer
Architecture: Parallelism, Scalability and
Programmability", McGraw-Hill
International Editions, New York, 1985

[8] Purbasari, Ayi, "Studi dan Implementasi
Adaptasi Metoda Eliminasi Gauss Parallel
Berbantukan Simulator Multipascal",
2:1-39, Tugas Akhir Jurusan Teknik
Informatika Institut Teknologi Bandung,
1997

[9] http://www.mines.colorado.edu/students/f/f
hood/pllproj/main.htm, "Parallelization of
Backpropagation Neural Network Training
for Hazardous Waste Detection", Colorado
School of Mines, December 12, 1995

[10] http://www.tc.cornell.edu/Edu/Talks/PVM/
Basics/, "Basics of PVM Programming",
Cornell Theory Center, August 5, 1996

