
July/Aug 1999 3

Many error-correcting data modes are well suited to
file transfers, yet most hams still prefer error-prone
Baudot for everyday chats. PSK31 should fix that.
It requires very little spectrum and borrows some
characteristics from Morse code. Equipment? Free

software, an HF transceiver and a PC with
Windows and a sound card will get you on the air.

By Peter Martinez, G3PLX

High Blakeband Farm
Underbarrow, Kendal,
Cumbria, LA8 8HP
England

PSK31: A New
Radio-Teletype Mode

[Thanks to the Radio Society of Great
Britain for permission to reprint this
article. It originally appeared in the
December ’98 and January ’99
issues of their journal, RadCom. This
article includes February 1999 up-
dates from Peter Martinez.—Ed.]

I’ve been active on RTTY since the
1960s, and was instrumental in intro-
ducing AMTOR to Amateur Radio at
the end of the ’70s. This improved the
reliability of the HF radio link and
paved the way to further develop-
ments that have taken this side of the
hobby more into data transfer, mes-
sage handling and computer linking,
but further away from the rest of
Amateur Radio, which is based on two-
way contacts between operators.

There is now a gap opening between
the data-transfer enthusiasts using
the latest techniques and the two-way

contact fans who are still using the
traditional RTTY mode of the ’60s,
although of course using keyboard and
screen rather than teleprinter. There
is scope for applying the new tech-
niques now available to bring RTTY
into the 21st century.

This article discusses the specific
needs of “live QSO” operating—as op-
posed to just transferring chunks of er-
ror-free data—and describes the PSK31
mode I have developed specifically for
live contacts. PSK31 is now becoming
popular using low-cost DSP kits. The
mode could become even cheaper as the
art of using PC sound cards is developed
by Amateur Radio enthusiasts.

What is Needed?
I believe that it is the error-correct-

ing process used in modern data
modes make them unsuitable for live
contacts. I have identified several fac-
tors; the first revolves around the fact
that all error-correcting systems in-
troduce a time-delay into the link. In
the case of an ARQ link like AMTOR
or PACTOR, there is a fixed transmis-

sion cycle of 450 ms or 1.25 s or more.
This delays any key press by as much
as one cycle period, and by more if
there are errors. With forward-error-
correction systems, there is also an
inevitable delay, because the infor-
mation is spread over time. In a live
two-way contact, the delay is doubled
at the point where the transmission is
handed over. I believe that these de-
lays make such systems unpleasant to
use in a two-way conversation.

This is not so much a technical prob-
lem as a human one. Another factor in
this category concerns the way that
quality of information content varies
as the quality of the radio link varies.
In an analogue transmission system
such as SSB or CW, there is a linear
relationship between the two. The
operators are aware of this all the time
and take account of it subconsciously:
They change the speed and tone of
voice instinctively and even choose the
conversation topic to suit the condi-
tions. In a digital mode, the relation-
ship between the signal-to-noise ratio
(S/N) on the air and the error-rate on

4 QEX

the screen is not so smooth. The mod-
ern error-correcting digital modes are
particularly bad at this, with copy
being almost perfect while the SNR is
above a certain level and stopping
completely when the SNR drops below
this level. The effect is of no conse-
quence in an automatic mailbox-for-

Table 1

The Varicode alphabet. The codes are transmitted left bit first, with “0” representing a phase reversal on BPSK and “1”
representing a steady carrier. A minimum of two zeros is inserted between characters. Some implementations may not
handle all the codes below 32.

ASCII* Varicode
0 (NUL) 1010101011
1 (SOH) 1011011011
2 (STX) 1011101101
3 (ETX) 1101110111
4 (EOT) 1011101011
5 (ENQ) 1101011111
6 (ACK) 1011101111
7 (BEL) 1011111101
8 (BS) 1011111111
9 (HT) 11101111
10 (LF) 11101
11 (VT) 1101101111
12 (FF) 1011011101
13 (CR) 11111
14 (SO) 1101110101
15 (SI) 1110101011
16 (DLE) 1011110111
17 (DC1) 1011110101
18 (DC2) 1110101101
19 (DC3) 1110101111
20 (DC4) 1101011011
21 (NAK) 1101101011
22 (SYN) 1101101101
23 (ETB) 1101010111
24 (CAN) 1101111011
25 (EM) 1101111101
26 (SUB) 1110110111
27 (ESC) 1101010101
28 (FS) 1101011101
29 (GS) 1110111011
30 (RS) 1011111011
31 (US) 1101111111
32 (SP) 1
! 111111111
“ 101011111
111110101
$ 111011011
% 1011010101
& 1010111011
‘ 101111111
(11111011
) 11110111
* 101101111

+ 111011111
, 1110101
- 110101
. 1010111
/ 110101111
0 10110111
1 10111101
2 11101101
3 11111111
4 101110111
5 101011011
6 101101011
7 110101101
8 110101011
9 110110111
: 11110101
; 110111101
< 111101101
= 1010101
> 111010111
? 1010101111
@ 1010111101
A 1111101
B 11101011
C 10101101
D 10110101
E 1110111
F 11011011
G 11111101
H 101010101
I 1111111
J 111111101
K 101111101
L 11010111
M 10111011
N 11011101
O 10101011
P 11010101
Q 111011101
R 10101111
S 1101111
T 1101101
U 101010111

V 110110101
W 101011101
X 101110101
Y 101111011
Z 1010101101
[111110111
\ 111101111
] 111111011
^ 1010111111
_ 101101101
‘ 1011011111
a 1011
b 1011111
c 101111
d 101101
e 11
f 111101
g 1011011
h 101011
i 1101
j 111101011
k 10111111
l 11011
m 111011
n 1111
o 111
p 111111
q 110111111
r 10101
s 10111
t 101
u 110111
v 1111011
w 1101011
x 11011111
y 1011101
z 111010101
{ 1010110111
| 110111011
} 1010110101
~ 1011010111
127 1110110101

*ASCII characters 0 through 31 are control codes. Their abbreviations are shown here in parentheses. For the meanings
of the abbreviations, refer to any recent ARRL Handbook.

ASCII* Varicode ASCII* Varicode

warding link, but can badly inhibit the
flow of a conversation.

A third factor is a social one: with
error-correcting modes, you only get
good copy when you are linked to one
other station. The copy is decidedly
worse when stations are not linked,
such as when calling CQ or listening

to others. This makes it difficult to
meet other people on the air, and there
is a tendency to limit contacts to a few
close friends or just mailboxes.

These factors lead me to suggest
that there is a case for a transmission
system that is not based on the use of
error-correcting codes, when the spe-

July/Aug 1999 5

cific application is that of live con-
tacts. The continued popularity of tra-
ditional RTTY using the start-stop
system is proof of this hypothesis:
There is minimal delay (150 mS), the
flow of conversation is continuous, the
error-rate is tolerable, and it is easy to
listen-in and join-in.

Improving on RTTY
How, then, do we go about using mod-

ern techniques that were not available
in the ’60s, to improve on traditional
RTTY? First, since we are talking about
live contacts, there is no need to discuss
any system that transmits text any
faster than can be typed by hand. Sec-
ond, modern transceivers are far more
frequency stable than those of the ’60s.
We should be able to use much nar-
rower bandwidths than in those days.
Third, digital processors are much more
powerful than the rotating cams and
levers of mechanical teleprinters, so we
could use better coding. The drift-toler-
ant technique of frequency-shift key-
ing, and the fixed-length five-unit
start-stop code still used today for
RTTY are a legacy of 30-year-old tech-
nology limits. We can do better now.

PSK31 Alphabet
The method I have devised for using

modern digital processing to improve
on the start-stop code, without intro-
ducing extra delays due to the error-
correcting or synchronization pro-
cesses, is based firmly on another
tradition, namely that of Morse code.
Because Morse uses short codes for the
more common letters, it is actually
very efficient in terms of the average
duration of a character. In addition, if
we think of it in terms that we nor-
mally use for digital modes, Morse
code is self-synchronizing: We don’t
need to use a separate process to tell
us where one character ends and the
next begins. This means that Morse
code doesn’t suffer from the “error-
cascade” problem that results in the
start-stop method getting badly out of
step if a start or stop-bit is corrupt.
This is because the pattern used to
code a gap between two characters
never occurs inside a character.

The code I have devised is therefore
a logical extension of Morse code, us-
ing not just one-bit or three-bit code-
elements (dots and dashes), but any
length. The letter-gap can also be
shortened to two bits. If we represent
key-up by 0 and key-down by 1, then
the shortest code is a single one by it-
self. The next is 11, then 101 and 111,
then 1011, 1101, 1111, but not 1001

since we must not have two or more
consecutive zeros inside a code. A few
minutes with pencil and paper will
generate more. We can do the 128-
character ASCII set with 10 bits.

I analyzed lots of English-language
text to find out how common was each
of the ASCII characters, then allo-
cated shorter codes to the more-com-
mon characters. The result is shown
in Table 1, and I call it the Varicode
alphabet. With English text, Varicode
has an average code length—includ-
ing the “00” letter gap—of 6.5 bits per
character. By simulating random bit
errors and counting the number of
corrupted characters, I find that
Varicode is 50% better than start-stop
code, thus verifying that its self-syn-
chronizing properties work well.

The shortest code in Morse is the
most-common letter: “e”, but in
Varicode the shortest code is allocated
to the word space. When idle, the
transmitter sends a continuous string
of zeros. Fig 1 compares the coding of
the same word in ASCII, RTTY, Morse
and Varicode.

PSK31 Modulation
and Demodulation

To transmit Varicode at a reason-
able typing speed of about 50 words
per minute needs a bit-rate of about 32
per sec. I have chosen 31.25, because
it can be easily derived from the 8-kHz
sample-rate used in many DSP sys-
tems. In theory, we only need a band-
width of 31.25 Hz to send this as bi-
nary data, and the frequency stability
that this implies can be achieved with

modern radio equipment on HF.
The method chosen was first used on

the amateur bands, to my knowledge,
by SP9VRC. Instead of frequency-
shifting the carrier, which is wasteful
of spectrum, or turning the carrier on
and off, which is wasteful of transmit-
ter power capability, the “dots” of the
code are signaled by reversing the
polarity of the carrier. You can think
of this as equivalent to transposing
the wires to your antenna feeder. This
uses the transmitted signal more effi-
ciently since we are comparing a posi-
tive signal before the reversal to a
negative signal after it, rather than
comparing the signal present in the
dot to no-signal in the gap. But if we
keyed the transmitter in this way at
31.25 baud, it would generate terrible
key clicks, so we need to filter it.

If we take a string of dots in Morse
code, and low-pass filter it to the theo-
retical minimum bandwidth, it will
look the same as a carrier that is 100%
amplitude-modulated by a sine wave
at the dot rate. The spectrum is a cen-
tral carrier and two sidebands at 6dB
down on either side. A signal that is
sending continuous reversals, filtered
to the minimum bandwidth, is equiva-
lent to a double-sideband suppressed-
carrier emission, that is, to two tones
either side of a suppressed carrier.
The improvement in the performance
of this polarity-reversal keying over
on-off keying is thus equivalent to the
textbook improvement in changing
from amplitude-modulation telephony
with full carrier to double-sideband
with suppressed carrier. I have called

Fig 1—The word “ten” in ASCII, RTTY, Morse and Varicode.

6 QEX

this technique “polarity-reversal key-
ing” so far, but everybody else calls it
“binary phase-shift keying,” or BPSK.
Fig 2 shows the envelope of BPSK
modulation and the detail of the polar-
ity reversal.

To generate BPSK in its simplest
form, we could convert our data
stream to levels of ±1 V, for example,
take it through a low-pass filter and
feed it into a balanced modulator.

The other input to the balanced
modulator is the desired carrier fre-
quency. When sending continuous re-
versals, this looks like a 1 V (P-P) sine
wave going into a DSB modulator, so
the output is a pure two-tone signal. In
practice we use a standard SSB trans-
ceiver and perform the modulation at
audio frequencies or carry out the
equivalent process in a DSP chip. We
could signal logic zero by continuous
carrier and signal logic one by a rever-
sal, but I do it the other way round for
reasons that will become clear shortly.

There are many ways to demodulate
BPSK, but they all start with a band-
pass filter. For the speed chosen for
PSK31, this filter can be as narrow as
31.25 Hz in theory. A brick-wall filter
of precisely this width would be costly,
however, not only in monetary terms
but also in the delay time through
the filter, and we want to avoid delays.
A practical filter might be twice that
width (62.5 Hz) at the 60-dB-down
points with a delay-time of two bits
(64 ms).

For the demodulation itself, since
BPSK is equivalent to double sideband,
the textbook method for demodulating
DSB can be used. However, it can also
be demodulated by delaying the signal
by one bit period and comparing it to
the signal with no delay in a phase com-
parator. The output is negative when
the signal reverses polarity and posi-
tive when it doesn’t.

We could extract the information
from the demodulated signal by mea-
suring the lengths of the “dots” and
“dashes,” as we do by ear with Morse
code. It helps to pick the data out of
the noise, however, if we know when
to expect signal changes. We can
easily transmit the data at an accu-
rately timed rate, so it should be pos-
sible to predict when to sample the de-
modulator output. This process is
known as synchronous reception, al-
though the term “coherent” is some-
times wrongly used.

To synchronize the receiver to the
transmitter, we can use the fact that a
BPSK signal has an amplitude-modu-
lation component. Although the modu-

lation varies with the data pattern, it
always contains a pure-tone compo-
nent at the baud rate. This can be ex-
tracted using a narrow filter, a PLL or
the DSP equivalent, and fed to the de-
coder to sample the demodulated data.
Fig 3 shows block diagrams of a typical
BPSK modulator and demodulator.

For the synchronization to work we
need to make sure that there are no
long gaps in the pattern of reversals.
A completely steady carrier has no
modulation, so we could never predict
when the next reversal was due. For-
tunately, Varicode is just what we
need, provided we choose the logic lev-
els so that zero corresponds to a rever-
sal and one to a steady carrier. The idle
signal of continuous zeros thus gener-
ates continuous reversals, giving us a
strong 31.25-Hz modulation. Even
with continuous keying, there will al-
ways be two reversals in the gaps be-
tween characters. The average num-
ber of reversals will therefore be more
than two in every 6.5 bits, and there
will never be more than 12 bits with
no reversal at all. If we make sure that
the transmission always starts with
an idle period, then the timing will
pull into sync quickly. By making the
transmitter end a transmission with a
“tail” of unmodulated carrier, it is then
possible to use the presence or absence
of reversals to squelch the decoder.
Hence, the screen doesn’t fill with
noise when there is no signal.

Getting Going
So much for the philosophy and the

theory, but how do you get on the air
with this mode? In the first experi-
ments on this mode in early 1996, the

route to getting on PSK31 was to ob-
tain one of several DSP starter kits.
These are printed-circuit cards, usu-
ally with a serial interface to a PC,
marketed by DSP processor manufac-
turers at low cost to help engineers
and students become familiar with
DSP programming. Some radio ama-
teurs have started to write software
for these, not just for RTTY but also
for SSTV, packet, satellite and digital-
voice experiments. They have audio
input and output and some general-
purpose digital input/output. The con-
struction work needed is limited to
wiring up cables, building a power
supply and putting the card into a
screened box. The DSP software is
freely available, as is the software that
runs in the PC to interface to the key-
board and screen, and can be obtained
most easily via the Internet. It would
certainly be possible to construct a
PSK31 modem in hardware, although
I know of no one who has done this yet.

However, it became clear late in 1998
that soundcards now common in per-
sonal computers are capable of per-
forming the audio input/output func-
tion needed for PSK31, with the DSP
software running in the PC. At Christ-
mas 1998, I completed a basic Windows-
based PSK31 program to use the
soundcard. The availability of this pro-
gram has dramatically increased the
level of PSK31 activity worldwide. (It’s
available on the Web: http://aintel.bi
.ehu.es/psk31.html—Ed.)

PSK31 Operating
Since PSK31 performance is the

same when calling, listening or in con-
tact, it’s easy to progress from listen-

Fig 2—The waveform of BPSK sending the Varicode space symbol., with a close-up
of the detail during a phase reversal.

http://aintel.bi.ehu.es/psk31.html
http://aintel.bi.ehu.es/psk31.html

July/Aug 1999 7

ing to others, to calling CQ, two-way
contacts and multi-station nets. The
narrow bandwidth and good weak-sig-
nal performance do mean learning a
few new tricks: First, set the radio dial
on one spot. Then fine-tune the audio
frequency, while listening through the
narrow audio filter rather than the
transceiver’s loudspeaker, while using
an on-screen phase-shift display to cen-
ter the incoming signal within a few
hertz. On transmit, since the envelope
of the PSK31 signal is not constant (as
is the case for FSK), it is important to
keep the transmitter linear through-
out. However, since the PSK31 idle is
identical to a standard two-tone test
signal, it is easy to set up. The worst
distortion products will be at ±45 Hz at
(typically) 36 dB below PEP.

So far, we’ve looked at requirements
for a live-contact, keyboard/screen
communication system, and proposed
the narrow-band PSK31 mode as a
candidate for a modern equivalent to
traditional RTTY. This mode has now
been in use on the HF bands by a small
but growing band of enthusiasts for
about two years. Now, let’s look at two
recent additions to PSK31.

A Second Look at
Error Correction

After getting PSK31 going with
BPSK modulation and the Varicode
alphabet, several people urged me to
add error correction to it in the belief
that it would improve it still further. I
resisted for the reasons that I gave
earlier, namely that the delays in
transmission, the discontinuous traf-
fic flow and the inability to listen-in,
all make error correction unattractive
for live contacts. There is another rea-
son. All error-correcting systems work
by adding redundant data bits. Sup-
pose I devise an error-correcting sys-
tem that doubles the number of trans-
mitted bits. If I wanted to maintain
traffic throughput, I would need to
double the bit rate. With BPSK that
means doubling the bandwidth, so I
lose 3dB of S/N and get more errors.
The error correction system will have
to work twice as hard just to break
even! It is no longer obvious that error
correction wins. It is interesting to
note that with FSK, where the band-
width is already much wider than the
information content, you can double
the bit-rate without doubling the band-
width, and error correction does work.
Computer simulation with BPSK in
white noise shows that when the S/N is
good, the error-correction system does
win, reducing the low error rate to very

low levels. At the S/N levels that are ac-
ceptable in live amateur contacts, it’s
better to transmit the raw data slowly
in the narrowest bandwidth. It also
takes up less spectrum space!

However, there was the suggestion
that error correction could give useful
results for bursts of noise, which can-
not be simulated on the bench, so I
decided to try it and do some compari-
son tests. The automatic repeat (ARQ)
method of correcting errors was ruled
out. Forward error correction (FEC)
seemed to deserve a second look, pro-
vided the transmission delay was not
too long.

I realized that comparing two sys-
tems with different bandwidths and
speeds on the air would be difficult.
Adjacent-channel interference would
be different, as would the effects of
multipath. There is, however, another
way to double the information capacity
of a BPSK channel without doubling its
bandwidth and speed. By adding a sec-
ond, 90° phase-shifted BPSK carrier at
the transmitter and a second demodu-
lator in the receiver, we can do the
same trick that is used to transmit two
color-difference signals in PAL and
NTSC television. I call this quadrature
polarity-reversal keying, but every-
body else calls it quaternary phase-
shift keying, QPSK.

There is a 3-dB S/N penalty with
QPSK, because we must split the trans-
mitter power equally between the two
channels. This is the same penalty as
doubling the bandwidth, so we are no
worse off. QPSK is therefore ideal for
my planned comparison experiment:
The adjacent-channel interference, the
S/N and the multipath performance
would be the same for both.

In the next section, I will think of
QPSK not as two channels of binary

data, but as a single-channel that can
be switched to any of four 90° phase-
shift values. By the way, the clock-
recovery idea used for BPSK works
just as well for QPSK, because the en-
velope still has a modulation compo-
nent at the bit-rate.

QPSK and the
Convolutional Code

There is a vast amount of available
knowledge about correcting errors in
data that are organized in blocks of
constant length (such as ASCII codes)
by transmitting longer blocks. I know
of nothing that covers error correction
of variable-length blocks like Vari-
code. There are ways of reducing er-
rors in continuous streams of data
with no block structure. (This seems a
natural choice for a radio link, since
its errors don’t have any block struc-
ture either.) These are called convolu-
tional codes. One of the simplest forms
does actually double the number of
data bits; it is therefore a natural
choice for a QPSK channel carrying a
variable-length code.

The convolutional encoder generates
one of the four phase shifts, not from
each data bit to be sent, but from a
sequence of them. This means that
each bit is effectively spread out in
time, intertwined with earlier and
later bits in a precise way. The more
we spread it out, the better will be the
ability of the code to correct bursts of
noise, but we must not go too far or we
will introduce too much transmission
delay. I chose a time spread of five bits.
The table that determines the phase
shift for each pattern of five successive
bits is given in the sidebar “The Con-
volutional Code.” The logic behind this
table is beyond the scope of this article.

In the receiver, a device called a

Fig 3—Block diagram of analog BPSK modem.

8 QEX

Viterbi decoder is used. This is not so
much a decoder as a whole family of
encoders playing a guessing game.
Each one makes a different “guess” at
what the last five transmitted data bits
might have been. There are 32 differ-
ent patterns of five bits and thus 32
encoders. At each step the phase-shift
value predicted by the bit-pattern-
guess from each encoder is compared
with the actual received phase-shift
value, and the 32 encoders are given
“marks out of ten” for accuracy. Just as
in a knockout competition, the worst 16
are eliminated and the best 16 go on to
the next round, taking their previous
scores with them. Each surviving en-
coder then gives birth to two “children,”
one guessing that the next transmitted
bit will be a zero and the other guess-
ing that it will be a one. They all do
their encoding to guess what the next
phase shift will be and receive scores
again, which are added on to their ear-
lier scores. The worst 16 encoders are
killed-off again and the cycle repeats.

It’s a bit like Darwin’s theory of evo-
lution, and eventually all the descen-
dants of the encoders that made the
right guesses earlier will be among the
survivors and will all carry the same
“ancestral genes.” If we record the fam-
ily tree (the bit-guess sequence) of each
survivor, we can trace it back to find
the transmitted bit-stream. We must
wait at least five generations (bit peri-
ods), however, before all survivors
have the same great great grand-
mother (who guessed right five bits
ago). The whole point is that the scor-
ing system based on the running total
ensures that the decoder always gives
the most-accurate guess, even if the
received pattern is corrupted. Although
we may need to wait a bit longer than
five bit periods for the best answer to
become clear. In other words, the
Viterbi decoder corrects errors.

The longer we wait, the more accu-
rate it is. I chose a decoder delay of four
times the time spread, or 20 bits. We
now have a 25-bit delay from one end
to the other (800 ms), giving a round-
trip delay to a two-way contact of 1.6
seconds. I think this is about the limit
before it becomes a nuisance. In any
case, the decoder could change to trade
performance for delay without incom-
patibility.

QPSK on the Air
PSK31 operators find QPSK can be

very good, but it is sometimes disap-
pointing. In bench tests with white
noise, it is actually worse than BPSK,
confirming the simulation work men-

Fig 4—The spectrum of a BPSK signal, idling and sending data, compared with an
unmodulated carrier at the same signal level. The carrier is the center pip; the
smaller pips are the PSK31 reversals, and the large, ragged hump is noise shaped
by the filter.

Fig 5—Comparison of the PSK31 spectrum with 100-baud, 200-Hz-shift FSK
(AMTOR/PACTOR). The taller, three-hump signal at center is PSK31. The smaller,
double-peak (±100 Hz) signal is FSK.

Fig 6—A screenshot of the PSK31 Windows program control panel, receiving a
slightly noisy QPSK signal (notice the scope display at left). Fine-tuning controls
for receive and transmit audio tones are near the bottom-center of the panel.

tioned earlier, but in conditions of
burst noise, improvements of up to five
times the character error-rate have
been recorded. This performance
doesn’t come free, however. Apart
from the transmission delay, which
can be a bit annoying, QPSK is twice
as critical in tuning as BPSK. A QPSK
signal will start to decode wrong when
the phase shift is greater than 45°, and
that will be the case when the tuning
error is only 3.9 Hz. This could be a
problem with some older radios. What
tends to happen is that contacts start
on BPSK and change to QPSK if it is

worth doing and there is no drift.
There is one aspect of QPSK that must
be kept in mind—it is important for
both stations to use the correct side-
band—on BPSK it doesn’t matter.

Extending the Alphabet
In English-speaking countries, vir-

tually all the characters and symbols
that are needed for day-to-day written
communications are present in the
128-character ASCII set. However,
many other languages have accents,
umlauts, tildes and other signs and
symbols that are not in the ASCII set,

July/Aug 1999 9

Is PSK31 Legal?
Some armchair lawyers have questioned the legality of PSK31 since its Varicode is not specifically mentioned as “le-

gal” digital code in Part 97. Some confusion is understandable, give the wording of 97.309(a). However, the FCC clari-
fied the meaning of the rules in an Order released October 11, 1995 (December 1995 QST, p 84). The Order (DA95-2106)
reads in part: “This Order amends Section 97.304(a) of the Commission’s Rules …to clarify that amateur stations may
use any digital code that has its technical characteristics publicly documented. This action was initiated by a letter from
the American Radio Relay League, Inc. (ARRL).”

The Order goes on to note that “The technical characteristics of CLOVER, G-TOR and PACTOR have been docu-
mented publicly for use by amateur operators, and commercial products are readily available that facilitate the transmis-
sion and reception of communications incorporating these codes. Including CLOVER, G-TOR and PACTOR in the rules
will not conflict with our objective of preventing the use of codes or ciphers intended to obscure the meaning of the com-
munication. We agree, therefore, that it would be helpful to the amateur service community for the rules to specifically
authorize amateur stations to transmit messages and data using these and similar digital codes”

Given that PSK31 is in the public domain for amateur use, that software is readily and freely available and that its
emission characteristics clearly meet the standards of Section 97.307 for RTTY/data, there is little doubt that its use by
FCC-licensed amateur stations is legal.

However, just to complete the documentation, in a letter to the FCC dated January 27, 1999, ARRL General Counsel
Christopher D. Imlay, W3KD, documented the technical characteristics of PSK31 in a manner similar to how CLOVER,
G-TOR and PACTOR were previously documented. There is no need for PSK31 to be mentioned specifically in the rules,
because CLOVER, G-TOR and PACTOR are simply given as examples.—Dave Sumner, K1ZZ

The Convolutional Code
The left-most numbers in each column contain the 32 combinations of a run

of five Varicode bits, transmitted left bit first. The right-most number is the
corresponding phase shift to be applied to the carrier, with “0” meaning no shift,
“1” meaning advance by 90°, “2” meaning polarity reversal and “3” meaning
retard by 90°. A signal that is advancing in phase continuously is higher in ra-
dio frequency than the carrier.
00000 2 01000 0 10000 1 11000 3
00001 1 01001 3 10001 2 11001 0
00010 3 01010 1 10010 0 11010 2
00011 0 01011 2 10011 3 11011 1
00100 3 01100 1 10100 0 11100 2
00101 0 01101 2 1010 3 11101 1
00110 2 01110 0 10110 1 11110 3
00111 1 01111 3 10111 2 11111 0

As an example, the “space” symbol, a single 1 preceded and followed by
zeros, would be represented by successive run-of-five groups 00000, 00001,
00010, 00100, 01000, 10000, 00000, which results in the transmitter sending
the QPSK pattern 2,1,3,3,0,1,2.

Note that a continuous sequence of zeros (the Varicode idle sequence) gives
continuous reversals, the same as BPSK.

but are now used in everyday written
text generated on computers. These
extra symbols are now standardized
worldwide in the ANSI alphabet, the
first 128 characters of which are iden-
tical to ASCII, and the second 128 con-
tain all the special symbols. Since the
WINDOWS operating system uses
ANSI, and most PC programs are now
written for WINDOWS, I have re-
cently extended the PSK31 alphabet
in a WINDOWS version.

It is very easy to add extra charac-
ters to the Varicode alphabet without
backwards-compatibility problems. In
the early PSK31 decoders, if there was
no “00” pattern received 10-bits after
the last “00”, it would simply be ig-
nored as a corruption. In the extended
alphabet, I let the transmitter legally
send codes longer than 10 bits. The old
decoders will just ignore them and the
extended decoder can interpret them
as extra characters. To get another
128 Varicodes means adding more 10-
bit codes, all 11-bit and some 12-bit
codes. There seemed little reason to be
clever with shorter common charac-
ters so I chose to allocate them in nu-
merical order, with code number 128
being 1110111101 and code number
255 being 101101011011. The vast
majority of these will never be used, so
it hardly slows the transmission rate
at all, but it would not be a good idea
to transmit binary files this way!

Summary
This article has identified some of

the characteristics of modern HF
data-transmission modes that have
contributed to the decline in live QSO
operation on these modes, while tradi-

tional RTTY is still widely used. By
concentrating on the special nature of
live-QSO operation, a new RTTY mode
(I don’t call it a “data” mode) has been
devised, which uses modern DSP
techniques and uses the frequency
stability of today’s HF radios. The
bandwidth is much narrower than any
other telegraphy mode. Fig 4 shows
the spectrum occupied by PSK31 and
Fig 5 compares this to the bandwidth
of a PACTOR signal.

At the time of writing (February
1999) PSK31 is available for the Texas
TMS320C50DSK with software writ-
ten by G0TJZ, the Analog Devices
ADSP21061 “SHARC” kit with soft-
ware by DL6IAK and my own software
for the Motorola DSP56002EVM. For
the SoundBlaster card, DL9RDZ has

written a LINUX-based program for
the PC. Some commercially available
DSP-based multimode controllers
have already been upgraded to include
PSK31 and more will follow. However,
the most popular implementation of
PSK31 so far is the WINDOWS-based
soundcard program, which I have
written for the soundcard. The DSP al-
gorithms for PSK31 are being made
available free-of-charge to bona-fide
amateur programmers, so there
should be a wide choice of PSK31 sys-
tems in the future.

News of the latest PSK31 develop-
ments and activity can be found at
http://aintel.bi.ehu.es/psk31.html.
The site also contains a link to infor-
mation for those who want to imple-
ment their own PSK31 modem.

http://aintel.bi.ehu.es/psk31.html

