
 1

The JT65 Communications Protocol

Joe Taylor, K1JT

Abstract. JT65 is a digital protocol intended for Amateur Radio communication with
extremely weak signals. It was designed to optimize Earth-Moon-Earth (EME) contacts on
the VHF bands, and conforms efficiently to the established standards and procedures for
such QSOs. JT65 includes error-correcting features that make it very robust, even with
signals much too weak to be heard. This paper summarizes the technical specifications of
JT65 and presents background information on its motivation and design philosophy. In
addition, it presents some details of the implementation of JT65 within a computer
program called WSJT, together with measurements of the resulting sensitivity and error
rates.

1. Introduction

Spark gave way to continuous wave some eighty years ago. More or less by default,
international Morse code with on-off keying has been the mode of choice for most amateur
radio weak-signal work ever since. Morse is convenient, versatile, and readily encoded and
decoded by humans. On-off keying is trivial to implement, and the required bandwidth is
small. The choice has been an easy one.

It is easy to show, however, that neither the encoding nor the modulation of CW is optimum.
When every dB of signal-to-noise ratio counts, as it does in amateur meteor-scatter and EME
contacts, there are very good reasons to explore other options. Personal computers equipped
with sound cards provide a golden opportunity for experimenting with the wide range of
possibilities. The program WSJT1, ,2 3 (“Weak Signal communications, by K1JT”) is the result
of my effort to introduce much more efficient coding and modulation schemes into amateur
weak-signal communications. In the program’s brief existence it has already become well
known to nearly all weak-signal VHF/UHF operators, and is in regular use by many of them.
On the VHF bands the overwhelming majority of all meteor-scatter QSOs and perhaps half of
all EME QSOs are now being made with the help of WSJT.

The present paper describes JT65, one of the communications protocols supported by WSJT.
JT65 is designed explicitly for communicating with extremely weak signals like those
encountered on the EME path. Operational aspects of the program are described in the WSJT
User’s Guide4; here I will be concerned with a complete technical description of the protocol
and a general description of the way it is implemented in WSJT.

Modern digital communication systems are based on the mathematics of information theory.
This field essentially originated with two classic 1948 papers5 in which Claude Shannon

1 See the WSJT Home Page at http://pulsar.princeton.edu/~joe/K1JT.
2 J. Taylor, K1JT, “WSJT: New Software for VHF Meteor-Scatter Communication,” QST December 2001, pp.
36-41.
3 J. Taylor, K1JT, “JT44: New Digital Mode for Weak Signals,” QST June 2002, pp. 81-82
4 The WSJT 4.7 User’s Guide is available at http://pulsar.princeton.edu/~joe/K1JT/WSJT_User_470.pdf.
5 Shannon, C. E., “A Mathematical Theory of Communicaton,” Bell System Tech. J.,27, pp. 379–423 and 623–
656, 1948.

http://pulsar.princeton.edu/~joe/K1JT

 2

proved that information can be conveyed over a noisy channel with arbitrarily low error rate
and a throughput that depends only on channel bandwidth and signal-to-noise ratio (SNR).
Achieving a low error rate at very low SNR requires the mathematical encoding of user
information into a form that is compact yet includes carefully structured redundancy.
Compactness is necessary in order to minimize transmitter power and maximize throughput;
redundancy is needed to ensure message integrity on a noisy and variable channel.

To be transmitted by radio, an encoded message must be impressed onto a carrier wave using
some form of modulation. The possibilities are almost limitless: information can be
conveyed by varying the amplitude, frequency, or phase of a carrier, or any combination
thereof. Commonly used digital modulation schemes include on-off keying (a limiting case
of amplitude modulation), phase-shift keying, and frequency shift keying. The JT65 protocol
uses 65-tone frequency shift keying with constant-amplitude waveforms and no phase
discontinuities. This form of modulation is much more efficient than on-off keying,
especially when combined with an optimal coding scheme. In addition, it is much more
tolerant of frequency instabilities than phase-shift keying.

Section §2 of the paper begins with some background information that has helped to motivate
the design philosophy of JT65, and Section §3 presents a high-level view of the overall
system design. The protocol itself is defined §4–8 and in Appendix A, while Sections §9–12
describe the reception and decoding of a JT65 signal. The protocol specification completely
defines the translation of any valid JT65 message into a waveform for transmission, and
provides all information necessary for decoding a received JT65 signal. I include the
essential details of how these tasks are actually carried out in WSJT. Different
implementations of JT65, and especially the algorithms used for reception, are also feasible.
I hope that this paper will motivate others to attempt this task, and that such efforts will lead
to further improvements in the performance and operational convenience of this mode.

2. EME QSOs: Requirements and Procedures

Amateur Radio is a just-for-fun activity, and for many the fun has always included such goals
as making contacts with all continents, all US states, and as many DXCC entities as possible.
These goals are especially difficult on the EME path — and therefore, for many, all the more
challenging and desirable. To make the game one that anybody can understand and play, it is
necessary to agree on some basic ground rules.

When signals are reasonably strong and communication between skilled operators essentially
error free, it is easy to judge whether a QSO has taken place. When a rare one shows up on
the amateur HF bands, rapid-fire QSOs in the ensuing pile-up generally proceed something
like the following exchange:

1. CQ HC8N
2. K1JT
3. K1JT 599
4. 599 TU
5. 73 HC8N

In this model contact K1JT never sends the callsign of the station he is working, because the
situation has made this information implicit and moot. The signals may not be “S9” at either
receiver, but no one really cares. After the exchange has taken place, both stations

 3

confidently enter the QSO in their logs, and they may later exchange QSL cards to confirm
that the contact took place.

In the VHF/UHF world, and especially when working over the EME path, signals are often
very weak and communication between even the most skilled operators is far from error free.
As a result, more rigorous standards need to be adopted for what constitutes a minimum
legitimate QSO. Long-established rules hold that a valid contact requires each station to
copy both complete callsigns, a signal report or some other piece of information, and explicit
acknowledgment that all of this information has been received. These guidelines apply and
work well for all types of weak-signal QSOs, whether by tropo, meteor scatter, EME, or other
propagation modes, and with all types of equipment and signaling methods.

Following these guidelines closely, the minimal EME QSOs of savvy VHF operators
generally proceed something like the following sequence:

1. CQ SV1BTR ...
2. SV1BTR K1JT ...
3. K1JT SV1BTR OOO ...
4. RO ...
5. RRR ...
6. 73 ...

For a scheduled QSO at prearranged time and frequency, transmission #1 is of course
unnecessary. The ellipses (...) indicate repetition of messages, some form of which is nearly
always used in EME contacts to help maximize chances of success. The “OOO” message
component is a shorthand notation for a minimal signal report. It has an agreed-upon
meaning that says, in effect, “your signals are readable at least some of the time, and I have
copied both of our callsigns.” Similarly, “RO” is a shorthand message conveying both signal
report and acknowledgment. It means “I have copied both calls and my signal report, and
your report is O”. When K1JT receives the acknowledgment “RRR” sent by SV1BTR, the
QSO is complete; but since SV1BTR does not yet know this, it is conventional to send “73”
or some other end-of-contact information to signify “we are done.”

Shorthand radio messages have been widely employed since the days of spark and land-line
telegraphy; the familiar Q-signals are another universally understood type. They are simple
forms of what in communication theory is called the “source encoding” of messages. The
choice of “OOO…” (repeated sequences of three carrier-on intervals separated by short
spaces, with a longer space after every third one) as the signal representing a positive signal
report was made by wise and experienced CW operators who knew that with extremely weak
signals, “dahs” are easier to copy than “dits”.

3. System Design

Figure 1 presents the flow diagram of a modern digital communication system. For maximum
efficiency at low signal-to-noise ratio, a user message is source encoded into a compact form
having minimum redundancy. It is then augmented with mathematically defined
redundancies which can enable full recovery of the message even if some parts are
subsequently corrupted by noise or signal dropouts. This process is known as “forward error
correction,” or FEC. The encoded message, including its error-correcting information, is
modulated onto a carrier. The resulting radio signal propagates over a channel that attenuates
it, perhaps by 250 dB or more for an EME path, and adds noise as well as amplitude,

frequency, and phase-changing “path modulation.” Upon reception the signal is demodulated
and decoded, and the results presented to the user.

Except for the error-correcting enhancements, the flow diagram of Figure 1 describes
traditional amateur CW communications just as well as modern digital techniques. In terms
of the CW EME QSO outlined on the previous page, source encoding compresses the implied
message “SV1BTR, this is K1JT, I have copied both of our calls” into the compact form
“SV1BTR K1JT OOO”. To provide some error-recovery capability and increase chances
that the message will be copied, a CW operator repeats the compressed message many times
during a timed transmission. To enhance the chances of copy even further, he may format
the repetitions so as to transmit only calls for the first 75% of a transmission, followed by
sending “OOO” repeatedly for the last 25%. He expects the receiving operator to know
about these conventions, and to listen accordingly. All of these forms of source encoding
help: the more that’s known about the characteristics of a weak signal, the easier it is to copy.
Under extremely marginal conditions, skilled operators listen for matches between what they
hear and the types of message components they might reasonably expect. If a good match is
found, message copy can be considered secure.

User message Source encode FEC encode Modulation

Transmission
channel

DemodulationFEC decodeSource decodeMessage to user

Fig. 1. – Schematic diagram of information flow in a digital communication system.

4. JT65 Source Encoding

JT65 uses exactly analogous techniques, starting out by making its transmitted messages
compact and efficient. As described in the WSJT 4.7 User’s Guide4, the standard “Type 1”
messages of JT65 consist of two callsigns, a grid locator, and an optional signal report — an
enhanced form of messages 2 and 3 in the model QSO between SV1BTR and K1JT. The
source encoder knows the rules by which standard amateur radio callsigns are constructed,
and uses this information to minimize the required number of information bits. An amateur
callsign consists of a one- or two-character prefix, at least one of which must be a letter,
followed by a digit and a suffix of one to three letters. Within these rules, the number of
possible callsigns is equal to 37×36×10×27×27×27, or somewhat over 262 million. (The

 4

 5

numbers 27 and 37 arise because in the first and last three positions a character may be
absent, or a letter, or perhaps a digit.) Since 228 is more than 268 million, 28 bits are enough
to encode any standard callsign uniquely. Similarly, the number of 4-digit Maidenhead grid
locators on earth is 180×180 = 32,400, which is less than 215 = 32,768; so a grid locator
requires 15 bits in a message. These important ideas for the efficient source encoding of
EME messages were first suggested by Clark and Karn6 in 1996.

Any Type 1 message can be source-encoded into 28+28+15= 71 bits, plus one more for the
signal report. In comparison, sending the message “SV1BTR K1JT OOO” in Morse code
requires 170 bits (where a bit is defined as the key-down dot interval), even without the grid
locator. The JT65 message is much more compact than the CW message, while conveying
significantly more information. In practice, the JT65 protocol encodes signal reports in
another way and instead uses the 72nd bit to indicate that the message contains arbitrary text
instead of callsigns and a grid locator. With a 43-character alphabet, the maximum plain-text
message length is 13 (the largest integer less than 71 log 2/log 43). Subject to this limiting
size, JT65 can transmit and receive anything in a message.

As indicated above, some 6 million of the possible 28-bit values are not needed for callsigns.
A few of these slots have been assigned to special message components such as “CQ” and
“QRZ”. CQ may be followed by three digits to indicate a desired callback frequency. (If
K1JT transmits on a standard calling frequency, say 144.120, and sends “CQ 113 K1JT
FN20”, it means that he will listen on 144.113 and respond there to any replies.) A numerical
signal report of the form “–NN” or “R–NN” can be sent in place of a grid locator. The
number NN must lie between 01 and 30. If required by licensing authorities, a country prefix
or portable suffix may be attached7 to one of the callsigns, as in ZA/PA2CHR or G4ABC/P.
If this feature is used, the additional information is sent in place of the grid locator. Some
remaining details of message encoding can be found in Appendix A, and a list of supported
“add-on” prefixes and suffixes is presented in Appendix B.

5. Forward Error Correction

After being compressed into 72 bits, a JT65 message is augmented with 306 uniquely defined
error-correcting bits. The FEC coding rate is thus r = 72/378 = 0.19; equivalently one might
say that each message is transmitted with a “redundancy ratio” of 378/72 = 5.25. With a
good error-correcting code, however, the resulting performance and sensitivity are far
superior to those obtainable with simple five-times message repetition. The high level of
redundancy means that JT65 copes extremely well with QSB. Signals that are discernible to
the software for as little as 10 to 15 s in a transmission can still yield perfect copy.

The source of this seemingly mysterious “coding gain” is not difficult to understand. With 72
bits the total number of possible user messages is 272, slightly more than 4.7×1021. The
number of possible patterns of 378 bits is a vastly larger number, 2378, in excess of 6 ×10113.
With a one-to-one correspondence between 72-bit user messages and 378-bit “codewords,”

6 Clark, T. W3IWI, and Karn, P., KA9Q, “EME 2000: Applying Modern Communications Technologies to
Weak Signal Amateur Operations,” Proc. Central States VHF Society, 1996.
7 Callsign prefixes and suffixes were accommodated in a somewhat different way in WSJT versions 4.9.2 and
earlier.

or unique sequences of 378 bits, it is clear that only a tiny fraction of the available sequences
need to be used in the code. The sequences chosen are those that are “as different from one
another as possible,” in a mathematically rigorous sense.

A huge variety of efficient error correcting codes are known and understood mathematically.
Among the best known are the Reed Solomon codes, used to produce the extremely low error
rates characteristic of modern CD-ROMs and hard disk drives. For JT65 I chose the Reed
Solomon code RS(63,12), which encodes each 72-bit user message into 63 six-bit “channel
symbols” for transmission. Every codeword in this code differs from every other one in at
least 52 places — which, in a nutshell, is why the code is so powerful. Even at very low
SNR, distinct sequences are very unlikely to be confused with one another.

As
Fig
a s
nu
to
JO
thr
on
at
of
if t

 Message #1: G3LTF DL9KR JO40
 Packed message, 6-bit symbols: 61 37 30 28 9 27 61 58 26 3 49 16
 Channel symbols, including FEC:
 14 16 9 18 4 60 41 18 22 63 43 5 30 13 15 9 25 35 50 21 0
 36 17 42 33 35 39 22 25 39 46 3 47 39 55 23 61 25 58 47 16 38
 39 17 2 36 4 56 5 16 15 55 18 41 7 26 51 17 18 49 10 13 24

 Message #2: G3LTE DL9KR JO40
 Packed message, 6-bit symbols: 61 37 30 28 5 27 61 58 26 3 49 16
 Channel symbols, including FEC:
 20 34 19 5 36 6 30 15 22 20 3 62 57 59 19 56 17 35 2 9 41
 10 23 24 41 35 39 60 48 33 34 49 54 53 55 23 24 59 7 9 39 51
 23 17 2 12 49 6 46 7 61 49 18 41 50 16 40 8 45 55 45 7 24

 Message #3: G3LTF DL9KR JO41
 Packed message, 6-bit symbols: 61 37 30 28 9 27 61 58 26 3 49 17
 Channel symbols, including FEC:
 47 27 46 50 58 26 38 24 22 3 14 54 10 58 36 23 63 35 41 56 53
 62 11 49 14 35 39 60 40 44 15 45 7 44 55 23 12 49 39 11 18 36
 26 17 2 8 60 44 37 5 48 44 18 41 32 63 4 49 55 57 37 13 25

Fig. 2. – Three JT65 messages shown as they appear to the user; in 72-bit packed form,
displayed as 12 × 6-bit symbol values; and as FEC-enhanced sequences of 63 × 6-bit
channel symbols. The channel symbols are ready to be transmitted by means of 64-
tone FSK, with each symbol value corresponding to a distinct tone.

 an example, the encoded sequences for three nearly identical messages are illustrated in
ure 2. Lines labeled “packed message” show each source-encoded, 72-bit user message as
equence of twelve 6-bit symbols. Reading from left to right, one can see that the fifth
merical symbol changes from 9 to 5 when the last letter in the first callsign changes from F
E. The final packed symbol changes from 16 to 17 when the grid locator changes from
40 to JO41. Otherwise, the three packed messages are identical. On the other hand, the
ee fully encoded sequences of channel symbols appear to be almost entirely different from
e another — so different that there is virtually no chance whatsoever that, if it is decodable
all, a noise-corrupted version of one of these messages would ever be misconstrued as one
the others. The full and exact user message has a high probability of being received, even
he key-down SNR is as low as 2 to 6 dB in 2.7 Hz bandwidth (or –28 to –24 dB in 2500

 6

 7

Hz, the conventional reference bandwidth used in WSJT). This statement can be quantified
by explicit measurements of transmission error rates as a function of SNR, and such
measurements are summarized for JT65 in Appendix C.

6. Interleaving and Gray Coding

After encoding, the order of JT65 symbols is permuted by writing them row-by-row into a
7×9 matrix, and reading them out column-by-column. I was studying FEC for the first time
when JT65 was being designed, and I mistakenly believed that scrambling the symbol order
would give the system greater immunity to signal dropouts. In fact, it does not; but since its
effect is quite harmless, the procedure has been left intact to preserve the integrity of JT65
signals over subsequent program versions. The re-ordered symbols are converted from
binary to Gray-code representation, which makes JT65 somewhat more tolerant of frequency
instabilities.

7. Shorthand Messages

Like the CW methods described earlier, JT65 uses special signal formats to convey
frequently used messages in a robust and efficient way. Three such messages are presently
defined. They correspond exactly to the transmissions numbered 4, 5, and 6 in the model CW
QSO between SV1BTR and K1JT, conveying the messages “RO”, “RRR”, and “73”. Instead
of keying a single-frequency carrier on and off according to a pattern like di-dah-dit, dah-
dah-dah, …, JT65 sends “RO” by transmitting two alternating tones with specified
frequencies and a specified keying rate. Such waveforms are easy to recognize and to
distinguish from one another, as well as from “normal” JT65 messages. Indeed, as many
users have discovered, the shorthand messages of JT65 are readily decodable by human
operators using sight or sound, as well as by computer.

8. Synchronization and Modulation

JT65 uses one-minute T/R sequences and requires tight synchronization of time and
frequency between transmitter and receiver. Typical amateur equipment cannot accomplish
this task with sufficient accuracy in open-loop fashion, so a JT65 signal must carry its own
synchronizing information. A pseudo-random “sync vector” is therefore interspersed with
the encoded information bits. It allows accurate calibration of relative time and frequency
errors, thereby establishing a rigorous framework within which the decoders can work. In
addition, it enables the averaging of successive transmissions so that decoding is possible
even when signals are too weak to accomplish it in a single transmission. The synchronizing
signal is so important that (except in shorthand messages) half of every transmission is
devoted to it.

A JT65 transmission is divided into 126 contiguous time intervals, each of length 0.372 s
(4096 samples at 11025 samples per second). Within each interval the waveform is a
constant-amplitude sinusoid at one of 65 pre-defined frequencies, and frequency changes
between intervals are accomplished in a phase-continuous manner. A transmission nominally
begins at t = 1 s after the start of a UTC minute and finishes at t = 47.8 s. The synchronizing
tone is at frequency 1270.5 Hz and is normally sent in each interval having a “1” in the
pseudo-random sequence reproduced at the top of Figure 3. The sequence has the desirable
mathematical property that its normalized autocorrelation function falls from 1 to nearly 0 for
all non-zero lags. As a consequence, it makes an excellent synchronizing vector.

Encoded user information is transmitted during the 63 intervals not used for the sync tone.
Each channel symbol generates a tone at frequency 1270.5 + 2.6917 (N+2) m Hz, where N is
the integral symbol value, 0 ≤ N ≤ 63, and m assumes the values 1, 2, and 4 for JT65 sub-
modes A, B, and C. The signal report “OOO” is conveyed by reversing sync and data
positions in the pseudo-random sequence. Because normal messages depend on tight
synchronization, they can be initiated only at the beginning of a UTC minute.

1,0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0,0,
0,1,1,1,0,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,1,0,1,0,1,0,1,1,
0,0,1,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1,
0,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,
1,1,1,1,1,1

Fig. 3. – The pseudo-random sequence used in JT65 as a “synchronizing vector,” and a
graphical representation of its autocorrelation function. The isolated central correlation spike
serves to synchronize time and frequency between transmitting and receiving stations.

Shorthand messages dispense with the sync vector and use intervals of 1.486 s (16,384
samples) for the alternating tones. The lower frequency is always 1270.5 Hz, the same as
that of the sync tone. The frequency separation is 26.917 nm Hz with n = 2, 3, 4 for the
messages RO, RRR, and 73. By the time shorthand messages become relevant in a QSO, the
frequency offset between transmitter and receiver has already been measured with high
accuracy. As a consequence, these messages can be securely identified by the operator as
coming from the station whose callsign was recently decoded. Accurate time
synchronization is not required for shorthand messages, so they may be started at any time
during a transmission.

By now it should be clear that JT65 does not transmit messages character by character, as
done in Morse code. Instead, whole messages are translated into unique strings of 72 bits,
and from those into sequences of 63 six-bit symbols. These symbols are transmitted over a
radio channel; some of them may arrive intact, while others are corrupted by noise. If
enough of the symbols are correct (in a probabilistically defined sense), the full 72-bit
compressed message can be recovered exactly. The decoded bits are then translated back
into the human-readable message that was sent. The coding scheme and robust FEC assure
that messages are never received in fragments. Message components cannot be mistaken for
one another, and callsigns are never displayed with a few characters missing or incorrect.
There is no chance for the letter O or R in a callsign to be confused with a signal report or an
acknowledgment, or for a fragment of a callsign like N8CQ or a grid locator like EM73 to be

 8

 9

misinterpreted. If your sked partner does not show and another station calls in his place, you
will never conclude mistakenly than the schedule was kept as intended.

9. Reception and Demodulation

Within WSJT, a received JT65 signal is converted to baseband and analyzed using a
sequence of well known DSP techniques. The process begins with an audio signal in the
approximate frequency range 0–3 kHz, digitized at the nominal rate 11025 samples per
second. The digital signal is low-pass filtered and downsampled by a factor of two. Power
spectra are computed from discrete Fourier transforms of sliding 2048-sample blocks and
examined for presence of the pseudo-random sync pattern. Detection and “peaking up” on
the sync pattern establishes the required frequency and time offsets, which may include
Doppler shift and EME path delays as well as errors in frequency calibration and clock
settings. The synchronizing accuracy is typically around 1.5 Hz in frequency and 0.03 s in
time. Once “sync” has been established, the program re-measures the sync-tone frequency
over small groups of tone intervals and fits a smooth curve to the results, thereby enabling the
tracking and compensation of small frequency drifts. Coherent phase tracking between
symbols is not required.

With accurate sync information in hand, the program computes a 64-bin spectrum for each of
the 63 channel symbols. These spectra have resolution 2.7m Hz (e.g., 5.4 Hz for sub-mode
JT65B, m = 2), and with very weak signals they are essentially noise-like in form. Many of
the individual data tones may not be detectable above the noise. On average, however, in
each tone interval the one frequency bin containing signal will have greater amplitude than
the others. Using the known statistical properties of random Gaussian noise, WSJT computes
the probability that a symbol was transmitted with each one of the possible values. This
probabilistic information, based on measured spectra of the synchronized symbols, is the
basic received information. After Gray coding and symbol interleaving have been removed,
the probabilities are passed on to the decoder.

10. Reed Solomon Decoder

Even a small error-correcting code like RS(63,12) can be very difficult to “invert” or decode
efficiently. The basic problem is this: given the measured spectra for each of the 63 channel
symbols, is there a unique 72-bit sequence that can be confidently identified as the user’s
message? In principle, one might encode each of the 272 possible user messages and correlate
the results against the received spectra, looking for a match. Such an approach is quite
impractical, however: a simple estimate reveals that with today’s 3 GHz computer, unlimited
memory, and a very efficient program, it would take about 200 million years to decode a
single received message this way.

Reed Solomon codes are economically important because well defined mathematical
algorithms exist for decoding them. The algorithms vary in complexity and in how closely
they approach the ideal sensitivity of the method just described. Since program version 4.5,
WSJT has used an algorithm that represents the state of the art in Reed Solomon decoding. It

 10

is based on a research paper by Ralf Koetter and Alexander Vardy8, and uses computer code
licensed from their company, CodeVector Technologies. Furnished with soft-decision
probabilistic information on received symbol values, this decoder produces a clear result for
every transmission analyzed. With very high confidence, it returns either the 72 bits of the
transmitted message or else a flag indicating “no result”.

Error rates for the WSJT decoders have been carefully measured as a function of signal level.
The results are summarized in Appendix C. Briefly stated, the K-V decoder exhibits a steep
transition from “nearly always decoding” to “nearly always failing” as the signal-to-noise
ratio decreases from about –23 to –25 dB (for JT65B) on the WSJT scale. The results further
show that with “clean” data (additive Gaussian noise, and perhaps fading, but no interference
from other signals), false decodes from the K-V decoding algorithm on RS(63,12) are so rare
that you will hardly ever see one.

11. Deep-Search Decoder

What if the K-V decoder fails to produce a result? Can anything further be done? Life is too
short to consider correlating all 272 possible user messages in search of a match, but the
number of unique messages transmitted in real EME QSOs is actually very much smaller
than 272, and the ones you are most interested in are fewer still. If the more plausible and
more interesting messages are tested first — more or less in the same way that one does when
copying very weak CW — and if the search algorithm is instructed to “time out” if no match
is found after a reasonable time, the brute-force computational approach described above can
be made practical. In WSJT, a procedure I call the “deep search” algorithm attempts to do
just this.

The deep search starts with a list of plausible callsigns and grid locators. Such lists have long
been maintained, both mentally and in hard copy, by most EME operators. They can be of
great help when trying to determine which station might be transmitting a weak CQ,
answering your own CQ, or tail-ending your last QSO. In the WSJT deep search decoder,
each list entry is paired with “CQ” and with the home callsign of the WSJT user, thereby
creating hypothetical test messages. If Nc calls are present in the list, approximately 2Nc
messages will be generated, fully encoded, and the channel symbols tested for good match
with the observed spectra. You can define the list of likely callsigns in any way you choose.
An example file is provided with WSJT, containing the calls of nearly 5000 worldwide
stations known to have been active in weak-signal work on the VHF/UHF bands.
Knowledgeable JT65 users maintain their own files, adding or deleting calls as they deem
appropriate.

In effect, your callsign database defines a set of matched filters, custom designed for your
station and tuned for optimum sensitivity to a subset of the messages you might reasonably
expect to receive. The deep search is not sensitive to messages with callsigns not in the
database, or arbitrary plain text, or anything besides “CQ” or your own call in the first
message field. Such messages will be decoded with the already remarkable sensitivity of the
K-V algorithm. However, for any message within the defined subset, the deep search
decoder provides about 4 dB more sensitivity while still maintaining a low error rate. It

8 Koetter, R., and Vardy, A., “Soft-Decision Algebraic Decoding of Reed Solomon Codes,” in Proceedings of
the IEEE International Symposium on Information Theory, p. 61, 2000.

 11

should be obvious that those 4 dB are essentially equivalent to the widely recognized
“schedule gain” that CW operators can experience when copying familiar calls or making
pre-arranged contacts.

12. Decoding Shorthand Messages

In addition to seeking a synchronizing tone modulated with the expected pseudo-random
pattern, WSJT searches for alternating tones having the specified modulation of a JT65
shorthand message. Frequencies are measured and compared with that of the sync tone in a
previous transmission, and a test is made to be sure that the modulation follows the specified
square-wave cycle. If the frequencies and modulation match, and if the amplitude exceeds a
preset threshold, a shorthand message detection is declared. Because of the close frequency
and timing tolerances, a low detection threshold can be set while still maintaining a very low
rate of false positives. Measured sensitivity curves for shorthand messages are presented in
Appendix C, along with those for the K-V algorithm and the deep search decoder.

13. Operator Responsibilities and Message Integrity

QSOs made with any of the WSJT modes, including JT65, require active user participation at
all stages. In the presence of birdies, QRM, QRN, or other anomalies such as multipath
signal distortions, operator involvement is necessary to avoid mistakes in interpreting
program output. Most operators find that they acquire the necessary skills easily, while
making their first few JT65 contacts.

In connection with the guidelines for valid QSOs outlined in Section 2, it is worth making
special mention of a particular feature of JT65. Contacts made with WSJT are inherently
self-documenting. When a JT65 QSO is successfully completed, both operators know that
the requisite information has been exchanged. Moreover, if desired, they have the recorded
wave files to prove it. These files provide a “bit trail,” an essentially incorruptible proof of
copy that anyone could examine. After especially interesting or difficult QSOs, recorded
waveforms and screen images are often exchanged by email. I have accumulated a large
library of JT65 wave files from my own QSOs, and by monitoring the bands, as well as many
sent to me by others. These files have proven extremely valuable for refining WSJT’s
algorithms for optimum sensitivity and minimum error rate, under real-world conditions.
Further progress will surely be made in these areas, in years to come.

14. On-the-Air Experience

The first usable version of JT65 was finished in November 2003. Early on-the-air tests with
N3FZ quickly confirmed my expectation that JT65 would become a major new weapon in the
arsenal of VHF/UHF weak-signal enthusiasts. The practical advantages of error-correcting
codes for weak-signal amateur radio communication were very plainly evident. Little
wonder, I realized, that NASA always transmits its deep-space photographs back to Earth
using tight source encoding and strong FEC. In deep-space communications, every dB of
improved sensitivity can save millions of dollars that would otherwise have to be spent on
larger antennas or more transmitter power.

Definition of the JT65 protocol has evolved only in minor ways since the first test
transmissions. Meanwhile, the decoders have been steadily improved, producing sizable
advances in on-the-air performance. I have no way of knowing how many EME QSOs have

 12

been made with JT65, but the number is surely in the many thousands. Users have not
hesitated to report program bugs or suggest operational improvements, and WSJT has greatly
benefited from such feedback. A sizable new group of EME enthusiasts has sprung up,
attracted by the fact that JT65 QSOs can be accomplished with much more modest setups
than required for traditional methods. Hundreds of JT65 EME QSOs have been made by
stations running 150 W to a single yagi on the 2 m band, and QSOs with “big gun” stations
have been made with as little as 5 W. Even 50 MHz EME QSOs, long considered among the
most difficult of feats, have become a common occurrence.

15. Looking Ahead

I do not foresee the need for major revision or expansion of the JT65 technical specification.
However, I can think of many ways in which the implementation of JT65 might be improved.
To start with, received audio data should be processed as it comes in, rather than in “batch
mode” after the whole reception period is complete. This would permit having a native real-
time spectral display, and I can imagine an option to allow “early decoding” of signals after
20 or 30 s of received data have been acquired. I have learned that some sound cards exhibit
errors as large as 0.6% in their sampling rates. The JT65 decoders presently in WSJT do not
attempt to correct for such errors, and sensitivity suffers unnecessarily. A better job of
detecting and suppressing interference can certainly be done. The algorithm presently used
to track frequency drifts of the desired signal can be improved. Explicit tracking of Doppler-
induced frequency changes is certainly desirable, especially at 432 and 1296 MHz. More
accurate control of the timing of transmit/receive sequences would help, and might be
possible even under Windows. Execution speed of the decoding procedures can be
improved… and the list goes on and on. Perhaps others will take up the challenge to
undertake some of these improvements, or will think of other enhancements that will be even
more significant.

Appendix A: Details of Message Encoding

As described in Sections §4–6, JT65 message encoding takes place in several stages. A
user’s message is first “source encoded” into a compact form requiring just 72 bits. The bits
are packed into twelve 6-bit information symbols, and a Reed Solomon encoder adds 51
parity symbols. The 63 channel symbols are interleaved, Gray coded, and transmitted using
64-tone frequency shift keying. A synchronizing vector is sent at a 65th frequency, two tone
intervals below the lowest data tone.

Some arbitrary choices define further details of message packing and the ordering of channel
symbols. To make it easy for others to implement the JT65 protocol, these things are best
described with actual source code examples. Appended below is a Fortran program that can
easily be compiled under Linux. Only the main program is listed here; the full source code,
including necessary subroutines and a Linux makefile, can be downloaded from
pulsar.princeton.edu/~joe/K1JT/JT65code.tgz. The compiled program accepts a JT65
message (enclosed in quotes on the command line) and responds with the packed message
and channel symbols as six-bit values. Examples of program output were presented in Figure
3 and described in Section §5.

http://pulsar.princeton.edu/~joe/K1JT/JT65code.tgz

 13

 program JT65code

C Provides examples of message packing, bit and symbol ordering,
C Reed Solomon encoding, and other necessary details of the JT65
C protocol.

 character*22 msg0,msg,decoded,cok*3
 integer dgen(12),sent(63)

 nargs=iargc()
 if(nargs.ne.1) then
 print*,'Usage: JT65code "message"'
 go to 999
 endif

 call getarg(1,msg0) !Get message from command line
 msg=msg0

 call chkmsg(msg,cok,nspecial,flip) !See if it includes "OOO" report
 if(nspecial.gt.0) then !or is a shorthand message
 write(*,1010)
 1010 format('Shorthand message.')
 go to 999
 endif

 call packmsg(msg,dgen) !Pack message into 72 bits
 write(*,1020) msg0
 1020 format('Message: ',a22) !Echo input message
 if(and(dgen(10),8).ne.0) write(*,1030) !Is the plain text bit set?
 1030 format('Plain text.')
 write(*,1040) dgen
 1040 format('Packed message, 6-bit symbols: ',12i3) !Print packed symbols

 call packmsg(msg,dgen) !Pack user message
 call rs_init !Initialize RS encoder
 call rs_encode(dgen,sent) !RS encode
 call interleave63(sent,1) !Interleave channel symbols
 call graycode(sent,63,1) !Apply Gray code

 write(*,1050) sent
 1050 format('Channel symbols, including FEC:'/(i5,20i3))
 call unpackmsg(dgen,decoded) !Unpack the user message
 write(*,1060) decoded,cok
 1060 format('Decoded message: ',a22,2x,a3)

 999 end

 14

Appendix B: Supported Callsign Prefixes and Suffixes

Callsign prefixes and suffixes supported by JT65 are listed in the file pfx.f included in the
source code archive at pulsar.princeton.edu/~joe/K1JT/JT65code.tgz, as described in
Appendix A. Supported suffixes include /P and /0 through /9, while the full prefix list is
appended below. Additional prefixes and suffixes could be added to the list in the future.
Space for 450 prefixes has been reserved by not supporting any grid locators within 5° of the
North Pole.

1A 1S 3A 3B6 3B8 3B9 3C 3C0 3D2 3D2C 3D2R 3DA 3V 3W 3X
3Y 3YB 3YP 4J 4L 4S 4U1I 4U1U 4W 4X 5A 5B 5H 5N 5R
5T 5U 5V 5W 5X 5Z 6W 6Y 7O 7P 7Q 7X 8P 8Q 8R
9A 9G 9H 9J 9K 9L 9M2 9M6 9N 9Q 9U 9V 9X 9Y A2
A3 A4 A5 A6 A7 A9 AP BS7 BV BV9 BY C2 C3 C5 C6
C9 CE CE0X CE0Y CE0Z CE9 CM CN CP CT CT3 CU CX CY0 CY9
D2 D4 D6 DL DU E3 E4 EA EA6 EA8 EA9 EI EK EL EP
ER ES ET EU EX EY EZ F FG FH FJ FK FKC FM FO
FOA FOC FOM FP FR FRG FRJ FRT FT5W FT5X FT5Z FW FY M MD
MI MJ MM MU MW H4 H40 HA HB HB0 HC HC8 HH HI HK
HK0A HK0M HL HM HP HR HS HV HZ I IS IS0 J2 J3 J5
J6 J7 J8 JA JDM JDO JT JW JX JY K KG4 KH0 KH1 KH2
KH3 KH4 KH5 KH5K KH6 KH7 KH8 KH9 KL KP1 KP2 KP4 KP5 LA LU
LX LY LZ OA OD OE OH OH0 OJ0 OK OM ON OX OY OZ
P2 P4 PA PJ2 PJ7 PY PY0F PT0S PY0T PZ R1F R1M S0 S2 S5
S7 S9 SM SP ST SU SV SVA SV5 SV9 T2 T30 T31 T32 T33
T5 T7 T8 T9 TA TF TG TI TI9 TJ TK TL TN TR TT
TU TY TZ UA UA2 UA9 UK UN UR V2 V3 V4 V5 V6 V7
V8 VE VK VK0H VK0M VK9C VK9L VK9M VK9N VK9W VK9X VP2E VP2M VP2V VP5
VP6 VP6D VP8 VP8G VP8H VP8O VP8S VP9 VQ9 VR VU VU4 VU7 XE XF4
XT XU XW XX9 XZ YA YB YI YJ YK YL YN YO YS YU
YV YV0 Z2 Z3 ZA ZB ZC4 ZD7 ZD8 ZD9 ZF ZK1N ZK1S ZK2 ZK3
ZL ZL7 ZL8 ZL9 ZP ZS ZS8

Appendix C: Measured Sensitivity and Error Rates

The JT65 protocol can be defined once and for all, but on-the-air performance depends on a
particular software implementation of the decoder. As outlined in §9–12, version 4.9 of
WSJT does its JT65 decoding in three phases: a soft-decision Reed Solomon decoder, the
deep search decoder, and the decoder for shorthand messages. Section §13 emphasizes that
in circumstances involving birdies, atmospherics, or other interference, operator interaction is
an essential part of the decoding process. The operator can enable a “Zap” function to excise
birdies, a “Clip” function to suppress broadband noise spikes, and a “Freeze” feature to limit
the frequency range searched for a sync tone. Having used these aids and the program’s
graphical and numerical displays appropriately, the operator is well equipped to recognize
and discard any spurious output from the decoder.

Under normal conditions in which the transmission channel can be characterized by simple
attenuation, the addition of white Gaussian noise, and perhaps multiplication by a “Rayleigh
fading” coefficient, the sensitivities and error rates of the decoders can be accurately
measured. A software simulator for doing this was written for the Linux platform as the first
(and very essential) part of WSJT program development. The simulator can generate
digitized waveforms for any WSJT mode and inject them into band-limited Gaussian noise
with a specified signal-to-noise ratio and optional fading characteristics. The resulting audio

http://pulsar.princeton.edu/~joe/K1JT/JT65code.tgz

files can be saved in WAV format, then opened and decoded in WSJT. They can also be
decoded directly within the simulator, using code identical to the WSJT decoder but
compiled for Linux.

Fig. 4.– Measured rates of copy as a function of SNR for JT65B. The curve labelled KV
refers to the Koetter-Vardy algorithm; DS refers to the deep search algorithm. The rate of
false decodes for the KV algorithm is too small to measure; for the DS algorithm the rate
of “hard errors” was about 0.03%, too small to show on this graph. Curves labelled “?”
and “A” at the lower left give the deep-search soft-error rates for decoded messages
marked “?” and when “Aggressive decoding” has been requested.

Several hundred thousand simulated JT65 transmissions have been tested in this way — first
as a means of debugging and fine-tuning the decoders, and later as a way to measure the
sensitivity and error rates of the finished program. Results of the simulations are summarized
in Figures 4 and 5. To create Figure 4, 1000 simulated transmissions were generated and
tested for each of the levels SNR = –30, –29, … –20 dB, using standard JT65 messages
consisting of two callsigns and a grid locator. The full WSJT decoder (version 4.9.5) was run

 15

 16

on each of the 11,000 simulated transmissions. The filled circles and solid curve in Figure 4
illustrate results from the Koetter-Vardy decoder. The essential conclusion is that 96% of the
transmissions were decoded correctly at –23 dB, 41% at –24 dB, and 3% at –25 dB. No false
decodes were produced by the KV decoder in any of the tests.

For the deep search algorithm, the filled squares and long-dashed curve show that 92% of the
transmissions were decoded correctly at –27 dB, 58% at –28 dB, and 17% at –29 dB. Three
“hard errors” (false decodes not flagged with a question mark) were recorded in the 11,000
simulated transmissions, for an overall error rate of 2.7 × 10-4 (too small to be seen in Fig. 4).
If one includes decoded messages flagged with a question mark, the numbers for correct copy
increase to 96%, 73%, and 29% at signal levels –27, –28, and –29 dB (short-dash curve and
filled triangles). The error rate, illustrated by the short-dash curve at the lower left of Figure
4, reaches a maximum of 3.6% at –29 dB. With WSJT’s “Aggressive decoding” option
selected, the percentages of correct copy increase to 97%, 82%, and 41%, at –27, –28, and –
29 dB (dotted curve and open triangles). However, the rate of false decodes also increases
substantially, especially at –28 dB and below, reaching a maximum of 29% at –29 dB.

Similar measurements have been made for sub-modes JT65A and JT65C. The results are
qualitatively similar to those shown for JT65B in Figure 4; the curves for JT65A are shifted
about 1 dB to the left (more sensitive than JT65B), while those for JT65C are shifted about 1
dB to the right.

Normal JT65 messages cannot be decoded unless the sync vector is reliably detected. In
WSJT the synchronizing procedure is exactly the same for sub-modes JT65A, B, and C. For
the tests illustrated in Figure 4 with SNR less than about –29 dB, failure to synchronize is the
cause of many failures to decode. Synchronization is very important for another reason, as
well: correct synchronization may allow the decoding of an accumulated average message,
independent of whether the transmitted message is decodable with the deep search algorithm.
Measured rates of synchronization are illustrated in Figure 5, again using 1000 simulated
transmissions at each value of SNR over a 10 dB range. Synchronization was achieved for
93% of the test transmissions at –28 dB, 74% at –29 dB, 44% at –30%, and 19% at –31 dB.
These measurements imply that message averaging should typically succeed after about 3
transmissions at –26 dB and 8 transmissions at –28 dB, but will require as many as 20
transmissions at –29 dB. These conclusions are consistent with on-the-air experience with
WSJT.

The simulator was also used to measure the detection rates for JT65 shorthand messages, as
illustrated in Figure 5. With 1000 trials at each SNR, shorthand messages were correctly
decoded in 88% of the trials at –31 dB, 60% at –32 dB, and 26% at –33 dB. The total
number of incorrectly decoded shorthand messages was five, in 11,000 trials. All five would
have been recognized as spurious by an attentive operator, because the measured frequency
offset was much larger than the normal tolerances used.

For any of a large number of reasons, on-the-air performance of JT65 may differ somewhat
from the simulated results shown here. The measurements summarized in Figures 4 and 5
were made under idealized conditions with additive white Gaussian noise (AWGN) and no
fading. (An additional set of simulations has been made with the effects of Rayleigh fading
included; the results are qualitatively similar to those shown here, with the curves shifted
several dB to the right.) The effects of birdies, other interference, and non-Gaussian noise
are harder to quantify. Suffice it to say that I often leave WSJT running in “Monitor” mode

for days at a time, with my receiver tuned to an arbitrary frequency between 144.100 and
144.160. I live in a densely populated region where plenty of birdies as well as other signals
come and go on the 2 meter band. The typical rate of false decodes when monitoring a quiet
band averages no more than one or two per hour. Examination of the files producing the
spurious decodes nearly always reveals tell-tale evidence that would have caused an operator
to recognize and reject the invalid information. When used in the intended manner, JT65 is a
highly accurate communication protocol.

Fig. 5.– Rates of message synchronization and copy of shorthand messages as a function of SNR.

Version: March 9, 2005

 17

