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Abstract. JT65 is a digital protocol intended for Amateur Radio communication with 
extremely weak signals.  It was designed to optimize Earth-Moon-Earth (EME) contacts on 
the VHF bands, and conforms efficiently to the established standards and procedures for 
such QSOs.  JT65 includes error-correcting features that make it very robust, even with 
signals much too weak to be heard.  This paper summarizes the technical specifications of 
JT65 and presents background information on its motivation and design philosophy.  In 
addition, it presents some details of the implementation of JT65 within a computer 
program called WSJT, together with measurements of the resulting sensitivity and error 
rates. 

1. Introduction 

Spark gave way to continuous wave some eighty years ago.  More or less by default, 
international Morse code with on-off keying has been the mode of choice for most amateur 
radio weak-signal work ever since.  Morse is convenient, versatile, and readily encoded and 
decoded by humans.  On-off keying is trivial to implement, and the required bandwidth is 
small.  The choice has been an easy one. 

It is easy to show, however, that neither the encoding nor the modulation of CW is optimum.  
When every dB of signal-to-noise ratio counts, as it does in amateur meteor-scatter and EME 
contacts, there are very good reasons to explore other options.  Personal computers equipped 
with sound cards provide a golden opportunity for experimenting with the wide range of 
possibilities.  The program WSJT1, ,2 3 (“Weak Signal communications, by K1JT”) is the result 
of my effort to introduce much more efficient coding and modulation schemes into amateur 
weak-signal communications.  In the program’s brief existence it has already become well 
known to nearly all weak-signal VHF/UHF operators, and is in regular use by many of them.  
On the VHF bands the overwhelming majority of all meteor-scatter QSOs and perhaps half of 
all EME QSOs are now being made with the help of WSJT. 

The present paper describes JT65, one of the communications protocols supported by WSJT.  
JT65 is designed explicitly for communicating with extremely weak signals like those 
encountered on the EME path.  Operational aspects of the program are described in the WSJT 
User’s Guide4; here I will be concerned with a complete technical description of the protocol 
and a general description of the way it is implemented in WSJT. 

Modern digital communication systems are based on the mathematics of information theory.  
This field essentially originated with two classic 1948 papers5 in which Claude Shannon 

 
1 See the WSJT Home Page at http://pulsar.princeton.edu/~joe/K1JT. 
2 J. Taylor, K1JT, “WSJT: New Software for VHF Meteor-Scatter Communication,” QST December 2001, pp. 
36-41. 
3 J. Taylor, K1JT, “JT44: New Digital Mode for Weak Signals,” QST June 2002, pp. 81-82 
4 The WSJT 4.7 User’s Guide is available at http://pulsar.princeton.edu/~joe/K1JT/WSJT_User_470.pdf. 
5 Shannon, C. E., “A Mathematical Theory of Communicaton,” Bell System Tech. J.,27, pp. 379–423 and 623–
656, 1948. 
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proved that information can be conveyed over a noisy channel with arbitrarily low error rate 
and a throughput that depends only on channel bandwidth and signal-to-noise ratio (SNR).  
Achieving a low error rate at very low SNR requires the mathematical encoding of user 
information into a form that is compact yet includes carefully structured redundancy.  
Compactness is necessary in order to minimize transmitter power and maximize throughput; 
redundancy is needed to ensure message integrity on a noisy and variable channel. 

To be transmitted by radio, an encoded message must be impressed onto a carrier wave using 
some form of modulation.  The possibilities are almost limitless: information can be 
conveyed by varying the amplitude, frequency, or phase of a carrier, or any combination 
thereof.  Commonly used digital modulation schemes include on-off keying (a limiting case 
of amplitude modulation), phase-shift keying, and frequency shift keying.  The JT65 protocol 
uses 65-tone frequency shift keying with constant-amplitude waveforms and no phase 
discontinuities.  This form of modulation is much more efficient than on-off keying, 
especially when combined with an optimal coding scheme.  In addition, it is much more 
tolerant of frequency instabilities than phase-shift keying. 

Section §2 of the paper begins with some background information that has helped to motivate 
the design philosophy of JT65, and Section §3 presents a high-level view of the overall 
system design. The protocol itself is defined §4–8 and in Appendix A, while Sections §9–12 
describe the reception and decoding of a JT65 signal.  The protocol specification completely 
defines the translation of any valid JT65 message into a waveform for transmission, and 
provides all information necessary for decoding a received JT65 signal.  I include the 
essential details of how these tasks are actually carried out in WSJT.  Different 
implementations of JT65, and especially the algorithms used for reception, are also feasible.  
I hope that this paper will motivate others to attempt this task, and that such efforts will lead 
to further improvements in the performance and operational convenience of this mode. 

2. EME QSOs: Requirements and Procedures 

Amateur Radio is a just-for-fun activity, and for many the fun has always included such goals 
as making contacts with all continents, all US states, and as many DXCC entities as possible.  
These goals are especially difficult on the EME path — and therefore, for many, all the more 
challenging and desirable.  To make the game one that anybody can understand and play, it is 
necessary to agree on some basic ground rules.  

When signals are reasonably strong and communication between skilled operators essentially 
error free, it is easy to judge whether a QSO has taken place.  When a rare one shows up on 
the amateur HF bands, rapid-fire QSOs in the ensuing pile-up generally proceed something 
like the following exchange:   

1.   CQ HC8N 
2.                       K1JT 
3.   K1JT 599 
4.                       599 TU 
5.   73 HC8N 

In this model contact K1JT never sends the callsign of the station he is working, because the 
situation has made this information implicit and moot.  The signals may not be “S9” at either 
receiver, but no one really cares.  After the exchange has taken place, both stations 



 3

confidently enter the QSO in their logs, and they may later exchange QSL cards to confirm 
that the contact took place. 

In the VHF/UHF world, and especially when working over the EME path, signals are often 
very weak and communication between even the most skilled operators is far from error free.  
As a result, more rigorous standards need to be adopted for what constitutes a minimum 
legitimate QSO.  Long-established rules hold that a valid contact requires each station to 
copy both complete callsigns, a signal report or some other piece of information, and explicit 
acknowledgment that all of this information has been received.  These guidelines apply and 
work well for all types of weak-signal QSOs, whether by tropo, meteor scatter, EME, or other 
propagation modes, and with all types of equipment and signaling methods. 

Following these guidelines closely, the minimal EME QSOs of savvy VHF operators 
generally proceed something like the following sequence:  

1.   CQ SV1BTR ... 
2.                           SV1BTR K1JT ... 
3.   K1JT SV1BTR OOO ... 
4.                           RO ... 
5.   RRR ... 
6.                           73 ... 

For a scheduled QSO at prearranged time and frequency, transmission #1 is of course 
unnecessary.  The ellipses (...) indicate repetition of messages, some form of which is nearly 
always used in EME contacts to help maximize chances of success.  The “OOO” message 
component is a shorthand notation for a minimal signal report.  It has an agreed-upon 
meaning that says, in effect, “your signals are readable at least some of the time, and I have 
copied both of our callsigns.”  Similarly, “RO” is a shorthand message conveying both signal 
report and acknowledgment.  It means “I have copied both calls and my signal report, and 
your report is O”.  When K1JT receives the acknowledgment “RRR” sent by SV1BTR, the 
QSO is complete; but since SV1BTR does not yet know this, it is conventional to send “73” 
or some other end-of-contact information to signify “we are done.” 

Shorthand radio messages have been widely employed since the days of spark and land-line 
telegraphy; the familiar Q-signals are another universally understood type.  They are simple 
forms of what in communication theory is called the “source encoding” of messages.  The 
choice of “OOO…” (repeated sequences of three carrier-on intervals separated by short 
spaces, with a longer space after every third one) as the signal representing a positive signal 
report was made by wise and experienced CW operators who knew that with extremely weak 
signals, “dahs” are easier to copy than “dits”. 

3. System Design 

Figure 1 presents the flow diagram of a modern digital communication system. For maximum 
efficiency at low signal-to-noise ratio, a user message is source encoded into a compact form 
having minimum redundancy.  It is then augmented with mathematically defined 
redundancies which can enable full recovery of the message even if some parts are 
subsequently corrupted by noise or signal dropouts.  This process is known as “forward error 
correction,” or FEC.  The encoded message, including its error-correcting information, is 
modulated onto a carrier. The resulting radio signal propagates over a channel that attenuates 
it, perhaps by 250 dB or more for an EME path, and adds noise as well as amplitude, 



frequency, and phase-changing “path modulation.”  Upon reception the signal is demodulated 
and decoded, and the results presented to the user. 

Except for the error-correcting enhancements, the flow diagram of Figure 1 describes 
traditional amateur CW communications just as well as modern digital techniques.  In terms 
of the CW EME QSO outlined on the previous page, source encoding compresses the implied 
message “SV1BTR, this is K1JT, I have copied both of our calls” into the compact form 
“SV1BTR K1JT OOO”.  To provide some error-recovery capability and increase chances 
that the message will be copied, a CW operator repeats the compressed message many times 
during a timed transmission.  To enhance the chances of copy even further, he may format 
the repetitions so as to transmit only calls for the first 75% of a transmission, followed by 
sending “OOO” repeatedly for the last 25%.  He expects the receiving operator to know 
about these conventions, and to listen accordingly.  All of these forms of source encoding 
help: the more that’s known about the characteristics of a weak signal, the easier it is to copy.  
Under extremely marginal conditions, skilled operators listen for matches between what they 
hear and the types of message components they might reasonably expect.  If a good match is 
found, message copy can be considered secure. 

 

User message Source encode FEC encode Modulation

Transmission
channel

DemodulationFEC decodeSource decodeMessage to user

 

Fig. 1. – Schematic diagram of information flow in a digital communication system. 

4. JT65 Source Encoding 

JT65 uses exactly analogous techniques, starting out by making its transmitted messages 
compact and efficient.  As described in the WSJT 4.7 User’s Guide4, the standard “Type 1” 
messages of JT65 consist of two callsigns, a grid locator, and an optional signal report — an 
enhanced form of messages 2 and 3 in the model QSO between SV1BTR and K1JT.  The 
source encoder knows the rules by which standard amateur radio callsigns are constructed, 
and uses this information to minimize the required number of information bits.  An amateur 
callsign consists of a one- or two-character prefix, at least one of which must be a letter, 
followed by a digit and a suffix of one to three letters.  Within these rules, the number of 
possible callsigns is equal to 37×36×10×27×27×27, or somewhat over 262 million.  (The 
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numbers 27 and 37 arise because in the first and last three positions a character may be 
absent, or a letter, or perhaps a digit.)  Since 228 is more than 268 million, 28 bits are enough 
to encode any standard callsign uniquely. Similarly, the number of 4-digit Maidenhead grid 
locators on earth is 180×180 = 32,400, which is less than 215 = 32,768; so a grid locator 
requires 15 bits in a message.  These important ideas for the efficient source encoding of 
EME messages were first suggested by Clark and Karn6 in 1996. 

Any Type 1 message can be source-encoded into 28+28+15= 71 bits, plus one more for the 
signal report.  In comparison, sending the message “SV1BTR K1JT OOO” in Morse code 
requires 170 bits (where a bit is defined as the key-down dot interval), even without the grid 
locator.  The JT65 message is much more compact than the CW message, while conveying 
significantly more information.  In practice, the JT65 protocol encodes signal reports in 
another way and instead uses the 72nd bit to indicate that the message contains arbitrary text 
instead of callsigns and a grid locator.  With a 43-character alphabet, the maximum plain-text 
message length is 13 (the largest integer less than 71 log 2/log 43).  Subject to this limiting 
size, JT65 can transmit and receive anything in a message.   

As indicated above, some 6 million of the possible 28-bit values are not needed for callsigns.  
A few of these slots have been assigned to special message components such as “CQ” and 
“QRZ”.  CQ may be followed by three digits to indicate a desired callback frequency.  (If 
K1JT transmits on a standard calling frequency, say 144.120, and sends “CQ 113 K1JT 
FN20”, it means that he will listen on 144.113 and respond there to any replies.)  A numerical 
signal report of the form “–NN” or “R–NN” can be sent in place of a grid locator.  The 
number NN must lie between 01 and 30.  If required by licensing authorities, a country prefix 
or portable suffix may be attached7 to one of the callsigns, as in ZA/PA2CHR or G4ABC/P.  
If this feature is used, the additional information is sent in place of the grid locator.  Some 
remaining details of message encoding can be found in Appendix A, and a list of supported 
“add-on” prefixes and suffixes is presented in Appendix B. 

5. Forward Error Correction 

After being compressed into 72 bits, a JT65 message is augmented with 306 uniquely defined 
error-correcting bits.  The FEC coding rate is thus r = 72/378 = 0.19; equivalently one might 
say that each message is transmitted with a “redundancy ratio” of 378/72 = 5.25.  With a 
good error-correcting code, however, the resulting performance and sensitivity are far 
superior to those obtainable with simple five-times message repetition.  The high level of 
redundancy means that JT65 copes extremely well with QSB.  Signals that are discernible to 
the software for as little as 10 to 15 s in a transmission can still yield perfect copy. 

The source of this seemingly mysterious “coding gain” is not difficult to understand. With 72 
bits the total number of possible user messages is 272, slightly more than 4.7×1021.  The 
number of possible patterns of 378 bits is a vastly larger number, 2378, in excess of 6 ×10113.  
With a one-to-one correspondence between 72-bit user messages and 378-bit “codewords,” 

 
6 Clark, T. W3IWI, and Karn, P., KA9Q, “EME 2000: Applying Modern Communications Technologies to 
Weak Signal Amateur Operations,” Proc. Central States VHF Society, 1996. 
7 Callsign prefixes and suffixes were accommodated in a somewhat different way in WSJT versions 4.9.2 and 
earlier. 

 



or unique sequences of 378 bits, it is clear that only a tiny fraction of the available sequences 
need to be used in the code.  The sequences chosen are those that are “as different from one 
another as possible,” in a mathematically rigorous sense. 

A huge variety of efficient error correcting codes are known and understood mathematically.  
Among the best known are the Reed Solomon codes, used to produce the extremely low error 
rates characteristic of modern CD-ROMs and hard disk drives.  For JT65 I chose the Reed 
Solomon code RS(63,12), which encodes each 72-bit user message into 63 six-bit “channel 
symbols” for transmission.  Every codeword in this code differs from every other one in at 
least 52 places — which, in a nutshell, is why the code is so powerful.  Even at very low 
SNR, distinct sequences are very unlikely to be confused with one another.   
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 Message #1:  G3LTF DL9KR JO40 
 Packed message, 6-bit symbols:  61 37 30 28  9 27 61 58 26  3 49 16 
 Channel symbols, including FEC: 
    14 16  9 18  4 60 41 18 22 63 43  5 30 13 15  9 25 35 50 21  0 
    36 17 42 33 35 39 22 25 39 46  3 47 39 55 23 61 25 58 47 16 38 
    39 17  2 36  4 56  5 16 15 55 18 41  7 26 51 17 18 49 10 13 24 
 
 Message #2:  G3LTE DL9KR JO40 
 Packed message, 6-bit symbols:  61 37 30 28  5 27 61 58 26  3 49 16 
 Channel symbols, including FEC: 
    20 34 19  5 36  6 30 15 22 20  3 62 57 59 19 56 17 35  2  9 41 
    10 23 24 41 35 39 60 48 33 34 49 54 53 55 23 24 59  7  9 39 51 
    23 17  2 12 49  6 46  7 61 49 18 41 50 16 40  8 45 55 45  7 24  
 
 Message #3:  G3LTF DL9KR JO41 
 Packed message, 6-bit symbols:  61 37 30 28  9 27 61 58 26  3 49 17 
 Channel symbols, including FEC: 
    47 27 46 50 58 26 38 24 22  3 14 54 10 58 36 23 63 35 41 56 53 
    62 11 49 14 35 39 60 40 44 15 45  7 44 55 23 12 49 39 11 18 36 
    26 17  2  8 60 44 37  5 48 44 18 41 32 63  4 49 55 57 37 13 25 
 

Fig. 2. – Three JT65 messages shown as they appear to the user; in 72-bit packed form, 
displayed as 12 × 6-bit symbol values; and as FEC-enhanced sequences of 63 × 6-bit 
channel symbols.  The channel symbols are ready to be transmitted by means of 64-
tone FSK, with each symbol value corresponding to a distinct tone. 

 an example, the encoded sequences for three nearly identical messages are illustrated in 
ure 2.  Lines labeled “packed message” show each source-encoded, 72-bit user message as 
equence of twelve 6-bit symbols.  Reading from left to right, one can see that the fifth 
merical symbol changes from 9 to 5 when the last letter in the first callsign changes from F 
E.  The final packed symbol changes from 16 to 17 when the grid locator changes from 
40 to JO41.  Otherwise, the three packed messages are identical.  On the other hand, the 
ee fully encoded sequences of channel symbols appear to be almost entirely different from 
e another — so different that there is virtually no chance whatsoever that, if it is decodable 
all, a noise-corrupted version of one of these messages would ever be misconstrued as one 
the others.  The full and exact user message has a high probability of being received, even 
he key-down SNR is as low as 2 to 6 dB in 2.7 Hz bandwidth (or –28 to –24 dB in 2500 
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Hz, the conventional reference bandwidth used in WSJT).  This statement can be quantified 
by explicit measurements of transmission error rates as a function of SNR, and such 
measurements are summarized for JT65 in Appendix C. 

6. Interleaving and Gray Coding 

After encoding, the order of JT65 symbols is permuted by writing them row-by-row into a 
7×9 matrix, and reading them out column-by-column.  I was studying FEC for the first time 
when JT65 was being designed, and I mistakenly believed that scrambling the symbol order 
would give the system greater immunity to signal dropouts.  In fact, it does not; but since its 
effect is quite harmless, the procedure has been left intact to preserve the integrity of JT65 
signals over subsequent program versions.  The re-ordered symbols are converted from 
binary to Gray-code representation, which makes JT65 somewhat more tolerant of frequency 
instabilities. 

7. Shorthand Messages 

Like the CW methods described earlier, JT65 uses special signal formats to convey 
frequently used messages in a robust and efficient way.  Three such messages are presently 
defined. They correspond exactly to the transmissions numbered 4, 5, and 6 in the model CW 
QSO between SV1BTR and K1JT, conveying the messages “RO”, “RRR”, and “73”.  Instead 
of keying a single-frequency carrier on and off according to a pattern like di-dah-dit, dah-
dah-dah, …, JT65 sends “RO” by transmitting two alternating tones with specified 
frequencies and a specified keying rate.  Such waveforms are easy to recognize and to 
distinguish from one another, as well as from “normal” JT65 messages.  Indeed, as many 
users have discovered, the shorthand messages of JT65 are readily decodable by human 
operators using sight or sound, as well as by computer. 

8. Synchronization and Modulation 

JT65 uses one-minute T/R sequences and requires tight synchronization of time and 
frequency between transmitter and receiver.  Typical amateur equipment cannot accomplish 
this task with sufficient accuracy in open-loop fashion, so a JT65 signal must carry its own 
synchronizing information.  A pseudo-random “sync vector” is therefore interspersed with 
the encoded information bits.  It allows accurate calibration of relative time and frequency 
errors, thereby establishing a rigorous framework within which the decoders can work.  In 
addition, it enables the averaging of successive transmissions so that decoding is possible 
even when signals are too weak to accomplish it in a single transmission.  The synchronizing 
signal is so important that (except in shorthand messages) half of every transmission is 
devoted to it.   

A JT65 transmission is divided into 126 contiguous time intervals, each of length 0.372 s 
(4096 samples at 11025 samples per second).  Within each interval the waveform is a 
constant-amplitude sinusoid at one of 65 pre-defined frequencies, and frequency changes 
between intervals are accomplished in a phase-continuous manner.  A transmission nominally 
begins at t = 1 s after the start of a UTC minute and finishes at t = 47.8 s.  The synchronizing 
tone is at frequency 1270.5 Hz and is normally sent in each interval having a “1” in the 
pseudo-random sequence reproduced at the top of Figure 3.  The sequence has the desirable 
mathematical property that its normalized autocorrelation function falls from 1 to nearly 0 for 
all non-zero lags.  As a consequence, it makes an excellent synchronizing vector. 



Encoded user information is transmitted during the 63 intervals not used for the sync tone. 
Each channel symbol generates a tone at frequency 1270.5 + 2.6917 (N+2) m Hz, where N is 
the integral symbol value, 0 ≤ N ≤ 63, and m assumes the values 1, 2, and 4 for JT65 sub-
modes A, B, and C.  The signal report “OOO” is conveyed by reversing sync and data 
positions in the pseudo-random sequence.   Because normal messages depend on tight 
synchronization, they can be initiated only at the beginning of a UTC minute.   

 
1,0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0,0, 
0,1,1,1,0,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,1,0,1,0,1,0,1,1, 
0,0,1,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1, 
0,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1, 
1,1,1,1,1,1 

 
Fig. 3. – The pseudo-random sequence used in JT65 as a “synchronizing vector,” and a 
graphical representation of its autocorrelation function. The isolated central correlation spike 
serves to synchronize time and frequency between transmitting and receiving stations. 

Shorthand messages dispense with the sync vector and use intervals of 1.486 s (16,384 
samples) for the alternating tones.  The lower frequency is always 1270.5 Hz, the same as 
that of the sync tone.  The frequency separation is 26.917 nm Hz with n = 2, 3, 4 for the 
messages RO, RRR, and 73.  By the time shorthand messages become relevant in a QSO, the 
frequency offset between transmitter and receiver has already been measured with high 
accuracy.  As a consequence, these messages can be securely identified by the operator as 
coming from the station whose callsign was recently decoded.  Accurate time 
synchronization is not required for shorthand messages, so they may be started at any time 
during a transmission. 

By now it should be clear that JT65 does not transmit messages character by character, as 
done in Morse code.  Instead, whole messages are translated into unique strings of 72 bits, 
and from those into sequences of 63 six-bit symbols.  These symbols are transmitted over a 
radio channel; some of them may arrive intact, while others are corrupted by noise.  If 
enough of the symbols are correct (in a probabilistically defined sense), the full 72-bit 
compressed message can be recovered exactly.  The decoded bits are then translated back 
into the human-readable message that was sent.  The coding scheme and robust FEC assure 
that messages are never received in fragments.  Message components cannot be mistaken for 
one another, and callsigns are never displayed with a few characters missing or incorrect.  
There is no chance for the letter O or R in a callsign to be confused with a signal report or an 
acknowledgment, or for a fragment of a callsign like N8CQ or a grid locator like EM73 to be 
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misinterpreted.  If your sked partner does not show and another station calls in his place, you 
will never conclude mistakenly than the schedule was kept as intended. 

 

9. Reception and Demodulation 

Within WSJT, a received JT65 signal is converted to baseband and analyzed using a 
sequence of well known DSP techniques.  The process begins with an audio signal in the 
approximate frequency range 0–3 kHz, digitized at the nominal rate 11025 samples per 
second.  The digital signal is low-pass filtered and downsampled by a factor of two.  Power 
spectra are computed from discrete Fourier transforms of sliding 2048-sample blocks and 
examined for presence of the pseudo-random sync pattern.  Detection and “peaking up” on 
the sync pattern establishes the required frequency and time offsets, which may include 
Doppler shift and EME path delays as well as errors in frequency calibration and clock 
settings.  The synchronizing accuracy is typically around 1.5 Hz in frequency and 0.03 s in 
time.  Once “sync” has been established, the program re-measures the sync-tone frequency 
over small groups of tone intervals and fits a smooth curve to the results, thereby enabling the 
tracking and compensation of small frequency drifts.  Coherent phase tracking between 
symbols is not required. 

With accurate sync information in hand, the program computes a 64-bin spectrum for each of 
the 63 channel symbols.  These spectra have resolution 2.7m Hz (e.g., 5.4 Hz for sub-mode 
JT65B, m = 2), and with very weak signals they are essentially noise-like in form.  Many of 
the individual data tones may not be detectable above the noise.  On average, however, in 
each tone interval the one frequency bin containing signal will have greater amplitude than 
the others.  Using the known statistical properties of random Gaussian noise, WSJT computes 
the probability that a symbol was transmitted with each one of the possible values.  This 
probabilistic information, based on measured spectra of the synchronized symbols, is the 
basic received information.  After Gray coding and symbol interleaving have been removed, 
the probabilities are passed on to the decoder.  

10. Reed Solomon Decoder 

Even a small error-correcting code like RS(63,12) can be very difficult to “invert” or decode 
efficiently.  The basic problem is this: given the measured spectra for each of the 63 channel 
symbols, is there a unique 72-bit sequence that can be confidently identified as the user’s 
message?  In principle, one might encode each of the 272 possible user messages and correlate 
the results against the received spectra, looking for a match.  Such an approach is quite 
impractical, however: a simple estimate reveals that with today’s 3 GHz computer, unlimited 
memory, and a very efficient program, it would take about 200 million years to decode a 
single received message this way. 

Reed Solomon codes are economically important because well defined mathematical 
algorithms exist for decoding them.  The algorithms vary in complexity and in how closely 
they approach the ideal sensitivity of the method just described.  Since program version 4.5, 
WSJT has used an algorithm that represents the state of the art in Reed Solomon decoding.  It 
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is based on a research paper by Ralf Koetter and Alexander Vardy8, and uses computer code 
licensed from their company, CodeVector Technologies.  Furnished with soft-decision 
probabilistic information on received symbol values, this decoder produces a clear result for 
every transmission analyzed.  With very high confidence, it returns either the 72 bits of the 
transmitted message or else a flag indicating “no result”. 

Error rates for the WSJT decoders have been carefully measured as a function of signal level.  
The results are summarized in Appendix C.  Briefly stated, the K-V decoder exhibits a steep 
transition from “nearly always decoding” to “nearly always failing” as the signal-to-noise 
ratio decreases from about –23 to –25 dB (for JT65B) on the WSJT scale. The results further 
show that with “clean” data (additive Gaussian noise, and perhaps fading, but no interference 
from other signals), false decodes from the K-V decoding algorithm on RS(63,12) are so rare 
that you will hardly ever see one. 

11. Deep-Search Decoder 

What if the K-V decoder fails to produce a result?  Can anything further be done?  Life is too 
short to consider correlating all 272 possible user messages in search of a match, but the 
number of unique messages transmitted in real EME QSOs is actually very much smaller 
than 272, and the ones you are most interested in are fewer still.  If the more plausible and 
more interesting messages are tested first — more or less in the same way that one does when 
copying very weak CW — and if the search algorithm is instructed to “time out” if no match 
is found after a reasonable time, the brute-force computational approach described above can 
be made practical.  In WSJT, a procedure I call the “deep search” algorithm attempts to do 
just this. 

The deep search starts with a list of plausible callsigns and grid locators.  Such lists have long 
been maintained, both mentally and in hard copy, by most EME operators.  They can be of 
great help when trying to determine which station might be transmitting a weak CQ, 
answering your own CQ, or tail-ending your last QSO.  In the WSJT deep search decoder, 
each list entry is paired with “CQ” and with the home callsign of the WSJT user, thereby 
creating hypothetical test messages.  If Nc calls are present in the list, approximately 2Nc 
messages will be generated, fully encoded, and the channel symbols tested for good match 
with the observed spectra.  You can define the list of likely callsigns in any way you choose.  
An example file is provided with WSJT, containing the calls of nearly 5000 worldwide 
stations known to have been active in weak-signal work on the VHF/UHF bands.  
Knowledgeable JT65 users maintain their own files, adding or deleting calls as they deem 
appropriate.   

In effect, your callsign database defines a set of matched filters, custom designed for your 
station and tuned for optimum sensitivity to a subset of the messages you might reasonably 
expect to receive.  The deep search is not sensitive to messages with callsigns not in the 
database, or arbitrary plain text, or anything besides “CQ” or your own call in the first 
message field.  Such messages will be decoded with the already remarkable sensitivity of the 
K-V algorithm.  However, for any message within the defined subset, the deep search 
decoder provides about 4 dB more sensitivity while still maintaining a low error rate.  It 

 
8 Koetter, R., and Vardy, A., “Soft-Decision Algebraic Decoding of Reed Solomon Codes,” in Proceedings of 
the IEEE International Symposium on Information Theory, p. 61, 2000. 
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should be obvious that those 4 dB are essentially equivalent to the widely recognized 
“schedule gain” that CW operators can experience when copying familiar calls or making 
pre-arranged contacts.   

12. Decoding Shorthand Messages 

In addition to seeking a synchronizing tone modulated with the expected pseudo-random 
pattern, WSJT searches for alternating tones having the specified modulation of a JT65 
shorthand message.  Frequencies are measured and compared with that of the sync tone in a 
previous transmission, and a test is made to be sure that the modulation follows the specified 
square-wave cycle.  If the frequencies and modulation match, and if the amplitude exceeds a 
preset threshold, a shorthand message detection is declared.  Because of the close frequency 
and timing tolerances, a low detection threshold can be set while still maintaining a very low 
rate of false positives.  Measured sensitivity curves for shorthand messages are presented in 
Appendix C, along with those for the K-V algorithm and the deep search decoder. 

13. Operator Responsibilities and Message Integrity 

QSOs made with any of the WSJT modes, including JT65, require active user participation at 
all stages.  In the presence of birdies, QRM, QRN, or other anomalies such as multipath 
signal distortions, operator involvement is necessary to avoid mistakes in interpreting 
program output.  Most operators find that they acquire the necessary skills easily, while 
making their first few JT65 contacts. 

In connection with the guidelines for valid QSOs outlined in Section 2, it is worth making 
special mention of a particular feature of JT65.  Contacts made with WSJT are inherently 
self-documenting.  When a JT65 QSO is successfully completed, both operators know that 
the requisite information has been exchanged.  Moreover, if desired, they have the recorded 
wave files to prove it.  These files provide a “bit trail,” an essentially incorruptible proof of 
copy that anyone could examine.  After especially interesting or difficult QSOs, recorded 
waveforms and screen images are often exchanged by email.  I have accumulated a large 
library of JT65 wave files from my own QSOs, and by monitoring the bands, as well as many 
sent to me by others.  These files have proven extremely valuable for refining WSJT’s 
algorithms for optimum sensitivity and minimum error rate, under real-world conditions.  
Further progress will surely be made in these areas, in years to come. 

14. On-the-Air Experience 

The first usable version of JT65 was finished in November 2003.  Early on-the-air tests with 
N3FZ quickly confirmed my expectation that JT65 would become a major new weapon in the 
arsenal of VHF/UHF weak-signal enthusiasts.  The practical advantages of error-correcting 
codes for weak-signal amateur radio communication were very plainly evident.  Little 
wonder, I realized, that NASA always transmits its deep-space photographs back to Earth 
using tight source encoding and strong FEC.  In deep-space communications, every dB of 
improved sensitivity can save millions of dollars that would otherwise have to be spent on 
larger antennas or more transmitter power. 

Definition of the JT65 protocol has evolved only in minor ways since the first test 
transmissions.  Meanwhile, the decoders have been steadily improved, producing sizable 
advances in on-the-air performance.  I have no way of knowing how many EME QSOs have 
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been made with JT65, but the number is surely in the many thousands.  Users have not 
hesitated to report program bugs or suggest operational improvements, and WSJT has greatly 
benefited from such feedback.  A sizable new group of EME enthusiasts has sprung up, 
attracted by the fact that JT65 QSOs can be accomplished with much more modest setups 
than required for traditional methods.  Hundreds of JT65 EME QSOs have been made by 
stations running 150 W to a single yagi on the 2 m band, and QSOs with “big gun” stations 
have been made with as little as 5 W.  Even 50 MHz EME QSOs, long considered among the 
most difficult of feats, have become a common occurrence. 

15. Looking Ahead 

I do not foresee the need for major revision or expansion of the JT65 technical specification.  
However, I can think of many ways in which the implementation of JT65 might be improved. 
To start with, received audio data should be processed as it comes in, rather than in “batch 
mode” after the whole reception period is complete.  This would permit having a native real-
time spectral display, and I can imagine an option to allow “early decoding” of signals after 
20 or 30 s of received data have been acquired.  I have learned that some sound cards exhibit 
errors as large as 0.6% in their sampling rates.  The JT65 decoders presently in WSJT do not 
attempt to correct for such errors, and sensitivity suffers unnecessarily.  A better job of 
detecting and suppressing interference can certainly be done.  The algorithm presently used 
to track frequency drifts of the desired signal can be improved.  Explicit tracking of Doppler-
induced frequency changes is certainly desirable, especially at 432 and 1296 MHz.  More 
accurate control of the timing of transmit/receive sequences would help, and might be 
possible even under Windows.  Execution speed of the decoding procedures can be 
improved… and the list goes on and on.  Perhaps others will take up the challenge to 
undertake some of these improvements, or will think of other enhancements that will be even 
more significant.   

 

Appendix A:  Details of Message Encoding 

As described in Sections §4–6, JT65 message encoding takes place in several stages.  A 
user’s message is first “source encoded” into a compact form requiring just 72 bits.  The bits 
are packed into twelve 6-bit information symbols, and a Reed Solomon encoder adds 51 
parity symbols.  The 63 channel symbols are interleaved, Gray coded, and transmitted using 
64-tone frequency shift keying.  A synchronizing vector is sent at a 65th frequency, two tone 
intervals below the lowest data tone. 

Some arbitrary choices define further details of message packing and the ordering of channel 
symbols.  To make it easy for others to implement the JT65 protocol, these things are best 
described with actual source code examples.  Appended below is a Fortran program that can 
easily be compiled under Linux.  Only the main program is listed here; the full source code, 
including necessary subroutines and a Linux makefile, can be downloaded from 
pulsar.princeton.edu/~joe/K1JT/JT65code.tgz. The compiled program accepts a JT65 
message (enclosed in quotes on the command line) and responds with the packed message 
and channel symbols as six-bit values.  Examples of program output were presented in Figure 
3 and described in Section §5. 
 
 

http://pulsar.princeton.edu/~joe/K1JT/JT65code.tgz
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      program JT65code 
 
 
C  Provides examples of message packing, bit and symbol ordering, 
C  Reed Solomon encoding, and other necessary details of the JT65 
C  protocol. 
 
      character*22 msg0,msg,decoded,cok*3 
      integer dgen(12),sent(63) 
 
      nargs=iargc() 
      if(nargs.ne.1) then 
         print*,'Usage: JT65code "message"' 
         go to 999 
      endif 
 
      call getarg(1,msg0)                 !Get message from command line 
      msg=msg0 
 
      call chkmsg(msg,cok,nspecial,flip)  !See if it includes "OOO" report 
      if(nspecial.gt.0) then              !or is a shorthand message 
         write(*,1010)  
 1010    format('Shorthand message.') 
         go to 999 
      endif 
 
      call packmsg(msg,dgen)              !Pack message into 72 bits 
      write(*,1020) msg0 
 1020 format('Message:   ',a22)           !Echo input message 
      if(and(dgen(10),8).ne.0) write(*,1030) !Is the plain text bit set? 
 1030 format('Plain text.')          
      write(*,1040) dgen 
 1040 format('Packed message, 6-bit symbols: ',12i3) !Print packed symbols 
 
      call packmsg(msg,dgen)              !Pack user message 
      call rs_init                        !Initialize RS encoder 
      call rs_encode(dgen,sent)           !RS encode 
      call interleave63(sent,1)           !Interleave channel symbols 
      call graycode(sent,63,1)            !Apply Gray code 
 
      write(*,1050) sent 
 1050 format('Channel symbols, including FEC:'/(i5,20i3)) 
      call unpackmsg(dgen,decoded)        !Unpack the user message 
      write(*,1060) decoded,cok 
 1060 format('Decoded message: ',a22,2x,a3) 
 
 999  end 
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Appendix B:  Supported Callsign Prefixes and Suffixes 

Callsign prefixes and suffixes supported by JT65 are listed in the file pfx.f included in the 
source code archive at pulsar.princeton.edu/~joe/K1JT/JT65code.tgz, as described in 
Appendix A.   Supported suffixes include /P and /0 through /9, while the full prefix list is 
appended below.  Additional prefixes and suffixes could be added to the list in the future.  
Space for 450 prefixes has been reserved by not supporting any grid locators within 5° of the 
North Pole.   
 
1A   1S   3A   3B6  3B8  3B9  3C   3C0  3D2  3D2C 3D2R 3DA  3V   3W   3X    
3Y   3YB  3YP  4J   4L   4S   4U1I 4U1U 4W   4X   5A   5B   5H   5N   5R    
5T   5U   5V   5W   5X   5Z   6W   6Y   7O   7P   7Q   7X   8P   8Q   8R    
9A   9G   9H   9J   9K   9L   9M2  9M6  9N   9Q   9U   9V   9X   9Y   A2    
A3   A4   A5   A6   A7   A9   AP   BS7  BV   BV9  BY   C2   C3   C5   C6    
C9   CE   CE0X CE0Y CE0Z CE9  CM   CN   CP   CT   CT3  CU   CX   CY0  CY9   
D2   D4   D6   DL   DU   E3   E4   EA   EA6  EA8  EA9  EI   EK   EL   EP    
ER   ES   ET   EU   EX   EY   EZ   F    FG   FH   FJ   FK   FKC  FM   FO    
FOA  FOC  FOM  FP   FR   FRG  FRJ  FRT  FT5W FT5X FT5Z FW   FY   M    MD    
MI   MJ   MM   MU   MW   H4   H40  HA   HB   HB0  HC   HC8  HH   HI   HK    
HK0A HK0M HL   HM   HP   HR   HS   HV   HZ   I    IS   IS0  J2   J3   J5    
J6   J7   J8   JA   JDM  JDO  JT   JW   JX   JY   K    KG4  KH0  KH1  KH2   
KH3  KH4  KH5  KH5K KH6  KH7  KH8  KH9  KL   KP1  KP2  KP4  KP5  LA   LU    
LX   LY   LZ   OA   OD   OE   OH   OH0  OJ0  OK   OM   ON   OX   OY   OZ    
P2   P4   PA   PJ2  PJ7  PY   PY0F PT0S PY0T PZ   R1F  R1M  S0   S2   S5    
S7   S9   SM   SP   ST   SU   SV   SVA  SV5  SV9  T2   T30  T31  T32  T33   
T5   T7   T8   T9   TA   TF   TG   TI   TI9  TJ   TK   TL   TN   TR   TT    
TU   TY   TZ   UA   UA2  UA9  UK   UN   UR   V2   V3   V4   V5   V6   V7    
V8   VE   VK   VK0H VK0M VK9C VK9L VK9M VK9N VK9W VK9X VP2E VP2M VP2V VP5   
VP6  VP6D VP8  VP8G VP8H VP8O VP8S VP9  VQ9  VR   VU   VU4  VU7  XE   XF4   
XT   XU   XW   XX9  XZ   YA   YB   YI   YJ   YK   YL   YN   YO   YS   YU    
YV   YV0  Z2   Z3   ZA   ZB   ZC4  ZD7  ZD8  ZD9  ZF   ZK1N ZK1S ZK2  ZK3   
ZL   ZL7  ZL8  ZL9  ZP   ZS   ZS8   

 
 

 
Appendix C:  Measured Sensitivity and Error Rates 

The JT65 protocol can be defined once and for all, but on-the-air performance depends on a 
particular software implementation of the decoder.  As outlined in §9–12, version 4.9 of 
WSJT does its JT65 decoding in three phases: a soft-decision Reed Solomon decoder, the 
deep search decoder, and the decoder for shorthand messages.  Section §13 emphasizes that 
in circumstances involving birdies, atmospherics, or other interference, operator interaction is 
an essential part of the decoding process.  The operator can enable a “Zap” function to excise 
birdies, a “Clip” function to suppress broadband noise spikes, and a “Freeze” feature to limit 
the frequency range searched for a sync tone.  Having used these aids and the program’s 
graphical and numerical displays appropriately, the operator is well equipped to recognize 
and discard any spurious output from the decoder. 

Under normal conditions in which the transmission channel can be characterized by simple 
attenuation, the addition of white Gaussian noise, and perhaps multiplication by a “Rayleigh 
fading” coefficient, the sensitivities and error rates of the decoders can be accurately 
measured.  A software simulator for doing this was written for the Linux platform as the first 
(and very essential) part of WSJT program development.  The simulator can generate 
digitized waveforms for any WSJT mode and inject them into band-limited Gaussian noise 
with a specified signal-to-noise ratio and optional fading characteristics.  The resulting audio 

http://pulsar.princeton.edu/~joe/K1JT/JT65code.tgz


files can be saved in WAV format, then opened and decoded in WSJT.  They can also be 
decoded directly within the simulator, using code identical to the WSJT decoder but 
compiled for Linux.   

 

 

Fig. 4.– Measured rates of copy as a function of SNR for JT65B.  The curve labelled KV 
refers to the Koetter-Vardy algorithm; DS refers to the deep search algorithm.  The rate of 
false decodes for the KV algorithm is too small to measure; for the DS algorithm the rate 
of “hard errors” was about 0.03%, too small to show on this graph.  Curves labelled “?” 
and “A” at the lower left give the deep-search soft-error rates for decoded messages 
marked “?” and when “Aggressive decoding” has been requested. 

Several hundred thousand simulated JT65 transmissions have been tested in this way — first 
as a means of debugging and fine-tuning the decoders, and later as a way to measure the 
sensitivity and error rates of the finished program.  Results of the simulations are summarized 
in Figures 4 and 5.  To create Figure 4, 1000 simulated transmissions were generated and 
tested for each of the levels SNR = –30, –29, … –20 dB, using standard JT65 messages 
consisting of two callsigns and a grid locator.  The full WSJT decoder (version 4.9.5) was run 
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on each of the 11,000 simulated transmissions.  The filled circles and solid curve in Figure 4 
illustrate results from the Koetter-Vardy decoder.  The essential conclusion is that 96% of the 
transmissions were decoded correctly at –23 dB, 41% at –24 dB, and 3% at –25 dB.  No false 
decodes were produced by the KV decoder in any of the tests. 

For the deep search algorithm, the filled squares and long-dashed curve show that 92% of the 
transmissions were decoded correctly at –27 dB, 58% at –28 dB, and 17% at  –29 dB.  Three 
“hard errors” (false decodes not flagged with a question mark) were recorded in the 11,000 
simulated transmissions, for an overall error rate of 2.7 × 10-4 (too small to be seen in Fig. 4).  
If one includes decoded messages flagged with a question mark, the numbers for correct copy 
increase to 96%, 73%, and 29% at signal levels –27, –28, and –29 dB (short-dash curve and 
filled triangles).  The error rate, illustrated by the short-dash curve at the lower left of Figure 
4, reaches a maximum of 3.6% at –29 dB.  With WSJT’s “Aggressive decoding” option 
selected, the percentages of correct copy increase to 97%, 82%, and 41%, at –27, –28, and –
29 dB (dotted curve and open triangles).  However, the rate of false decodes also increases 
substantially, especially at –28 dB and below, reaching a maximum of 29% at –29 dB.   

Similar measurements have been made for sub-modes JT65A and JT65C.  The results are 
qualitatively similar to those shown for JT65B in Figure 4; the curves for JT65A are shifted 
about 1 dB to the left (more sensitive than JT65B), while those for JT65C are shifted about 1 
dB to the right. 

Normal JT65 messages cannot be decoded unless the sync vector is reliably detected.  In 
WSJT the synchronizing procedure is exactly the same for sub-modes JT65A, B, and C.  For 
the tests illustrated in Figure 4 with SNR less than about –29 dB, failure to synchronize is the 
cause of many failures to decode.  Synchronization is very important for another reason, as 
well: correct synchronization may allow the decoding of an accumulated average message, 
independent of whether the transmitted message is decodable with the deep search algorithm. 
Measured rates of synchronization are illustrated in Figure 5, again using 1000 simulated 
transmissions at each value of SNR over a 10 dB range.  Synchronization was achieved for 
93% of the test transmissions at –28 dB, 74% at –29 dB, 44% at –30%, and 19% at –31 dB.  
These measurements imply that message averaging should typically succeed after about 3 
transmissions at –26 dB and 8 transmissions at –28 dB, but will require as many as 20 
transmissions at –29 dB.  These conclusions are consistent with on-the-air experience with 
WSJT. 

The simulator was also used to measure the detection rates for JT65 shorthand messages, as 
illustrated in Figure 5.  With 1000 trials at each SNR, shorthand messages were correctly 
decoded in 88% of the trials at –31 dB, 60% at –32 dB, and 26% at –33 dB.  The total 
number of incorrectly decoded shorthand messages was five, in 11,000 trials.  All five would 
have been recognized as spurious by an attentive operator, because the measured frequency 
offset was much larger than the normal tolerances used.   

For any of a large number of reasons, on-the-air performance of JT65 may differ somewhat 
from the simulated results shown here.   The measurements summarized in Figures 4 and 5 
were made under idealized conditions with additive white Gaussian noise (AWGN) and no 
fading.  (An additional set of simulations has been made with the effects of Rayleigh fading 
included; the results are qualitatively similar to those shown here, with the curves shifted 
several dB to the right.)  The effects of birdies, other interference, and non-Gaussian noise 
are harder to quantify.  Suffice it to say that I often leave WSJT running in “Monitor” mode 



for days at a time, with my receiver tuned to an arbitrary frequency between 144.100 and 
144.160.  I live in a densely populated region where plenty of birdies as well as other signals 
come and go on the 2 meter band. The typical rate of false decodes when monitoring a quiet 
band averages no more than one or two per hour.  Examination of the files producing the 
spurious decodes nearly always reveals tell-tale evidence that would have caused an operator 
to recognize and reject the invalid information.  When used in the intended manner, JT65 is a 
highly accurate communication protocol. 

 

 

Fig. 5.– Rates of message synchronization and copy of shorthand messages as a function of SNR. 
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